ON THE RELATIONSHIP OF GEOMAGNETIC DISTURBANCES AND SEISMIC ACTIVITY FOR ALASKA REGION

2020 ◽  
Vol 6 (1) ◽  
pp. 93-101
Author(s):  
Valeriy Ruzhich ◽  
Elena Levina

We discuss the relationship of solar activity with the seismicity of Earth and reasons for the differences in the results of studies of various authors. Using the epoch superposition method, we analyze the differences in seismic activity distribution over phases of the 11-year solar cycle for the whole world, hemispheres, sectors, latitudinal belts, and individual regions. The northeastern sector of Earth has been shown to make the main contribution to the planetary distribution of seismic activity over phases of the 11-year solar cycle. We have revealed a pattern in the distribution of seismic activity over latitudinal belts: the solar cycle phases, at which the main maximum of seismic activity occurs, increase with increasing latitude in both hemispheres. For some regions, the results may differ from the generalized results for Earth due to the influence of local geodynamic conditions during the destruction of the earth's crust. In middle latitudes, the maximum number of earthquakes is shifted to the later phases of the solar cycle from west to east, which was not found for the northern regions. We discuss possible reasons for various manifestations of solar-terrestrial relationships for different regions, taking into account their different structure and geodynamic development modes. The presence of pronounced maxima of the seismic activity distribution over the 11-year solar cycle phases allows us to use them for refining the “time” parameter in the medium-term prediction of dangerous earthquakes.


2021 ◽  
Vol 43 (2) ◽  
pp. 199-219
Author(s):  
Duong T. N. ◽  
Lai Hop Phong ◽  
Pham D. N. ◽  
Chen C. H. ◽  
Dinh V. T.

Thanh Hoa province belongs to the southwest part of Northwest Vietnam, which is considered a tectonically active region. In the area of Thanh Hoa province, there are three deep-seated tectonic faults, namely Son La-Bim Son, Song Ma, and Sop Cop. As predicted by scientists, these faults are capable of producing credible earthquakes that might be the strongest in the territory of Vietnam. Besides the three main seismogenic sources, in the province, there are other smaller active faults such as Thuong Xuan-Ba Thuoc and Thuong Xuan-Vinh Loc but the relationship of these faults with seismic activity is still rather blurred. This may due to the sparseness of the Vietnamese National Seismic Network which can not record adequately small earthquakes in the area. This paper presents new results of additional monitoring from a local seismic network using 12 Guralp - 6TD broadband seismometers that have been deployed in Thanh Hoa province since November 2009. We found that the Thanh Hoa area is not seismically quiet. The average number of earthquakes recorded by the network has reached 80 - 90 events per year and some of them have magnitude from ML 3.0 to 4.0.By integration of the earthquake epicenters derived from the local network and distribution of active faults, we can detect several earthquakes locating near the three active faults, not only along the main faults but also along its subsidiary faults. We focused on the active faults of Thuong Xuan-Ba Thuoc and Thuong Xuan-Vinh Loc by using the recent results of the gravity, seismic, and magnetotelluric data analyses. Several recorded earthquakes distribute along the two small faults and some of them reach magnitude 3.0 or greater on the ML scale. In this study, the Thuong Xuan-Vinh Loc is recognized as a seismogenic source. To identify seismic hazard potential caused by earthquakes generated from the active faults, segmentation of the Thuong Xuan - Ba Thuoc fault had been done based on geological and geomorphological indications and seismic activity, and then the peak ground acceleration was determined for each fault segment. Besides, a large number of earthquake epicenters do not have a good correlation with a specific fault, especially in the area of Thanh Hoa coastal plain, which is covered by thick layers of Neogene - Quaternary sediment. This shows that there may be hidden active faults in the area which are needed to study further.


2021 ◽  
Vol 43 (2) ◽  
Author(s):  
Duong T. N. ◽  
Lai Hop Phong ◽  
Pham D. N. ◽  
Chen C. H. ◽  
Dinh V. T.

Thanh Hoa province belongs to the southwest part of Northwest Vietnam, which is considered a tectonically active region. In the area of Thanh Hoa province, there are three deep-seated tectonic faults, namely Son La-Bim Son, Song Ma, and Sop Cop. As predicted by scientists, these faults are capable of producing credible earthquakes that might be the strongest in the territory of Vietnam. Besides the three main seismogenic sources, in the province, there are other smaller active faults such as Thuong Xuan-Ba Thuoc and Thuong Xuan-Vinh Loc but the relationship of these faults with seismic activity is still rather blurred. This may due to the sparseness of the Vietnamese National Seismic Network which can not record adequately small earthquakes in the area. This paper presents new results of additional monitoring from a local seismic network using 12 Guralp - 6TD broadband seismometers that have been deployed in Thanh Hoa province since November 2009. We found that the Thanh Hoa area is not seismically quiet. The average number of earthquakes recorded by the network has reached 80 - 90 events per year and some of them have magnitude from ML 3.0 to 4.0.By integration of the earthquake epicenters derived from the local network and distribution of active faults, we can detect several earthquakes locating near the three active faults, not only along the main faults but also along its subsidiary faults. We focused on the active faults of Thuong Xuan-Ba Thuoc and Thuong Xuan-Vinh Loc by using the recent results of the gravity, seismic, and magnetotelluric data analyses. Several recorded earthquakes distribute along the two small faults and some of them reach magnitude 3.0 or greater on the ML scale. In this study, the Thuong Xuan-Vinh Loc is recognized as a seismogenic source. To identify seismic hazard potential caused by earthquakes generated from the active faults, segmentation of the Thuong Xuan - Ba Thuoc fault had been done based on geological and geomorphological indications and seismic activity, and then the peak ground acceleration was determined for each fault segment. Besides, a large number of earthquake epicenters do not have a good correlation with a specific fault, especially in the area of Thanh Hoa coastal plain, which is covered by thick layers of Neogene - Quaternary sediment. This shows that there may be hidden active faults in the area which are needed to study further.


2020 ◽  
Vol 6 (1) ◽  
pp. 116-125
Author(s):  
Valeriy Ruzhich ◽  
Elena Levina

We discuss the relationship of solar activity with the seismicity of Earth and reasons for the differences in the results of studies of various authors. Using the epoch superposition method, we analyze the differences in seismic activity distribution over phases of the 11-year solar cycle for the whole world, hemispheres, sectors, latitudinal belts, and individual regions. The northeastern sector of Earth has been shown to make the main contribution to the planetary distribution of seismic activity over phases of the 11-year solar cycle. We have revealed a pattern in the distribution of seismic activity over latitudinal belts: the solar cycle phases, at which the main maximum of seismic activity occurs, increase with increasing latitude in both hemispheres. For some regions, the results may differ from the generalized results for Earth due to the influence of local geodynamic conditions during the destruction of the earth's crust. In middle latitudes, the maximum number of earthquakes is shifted to the later phases of the solar cycle from west to east, which was not found for the northern regions. We discuss possible reasons for various manifestations of solar-terrestrial relationships for different regions, taking into account their different structure and geodynamic development modes. The presence of pronounced maxima of the seismic activity distribution over the 11-year solar cycle phases allows us to use them for refining the “time” parameter in the medium-term prediction of dangerous earthquakes.


Paleobiology ◽  
1980 ◽  
Vol 6 (02) ◽  
pp. 146-160 ◽  
Author(s):  
William A. Oliver

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
Leon Dmochowski

Electron microscopy has proved to be an invaluable discipline in studies on the relationship of viruses to the origin of leukemia, sarcoma, and other types of tumors in animals and man. The successful cell-free transmission of leukemia and sarcoma in mice, rats, hamsters, and cats, interpreted as due to a virus or viruses, was proved to be due to a virus on the basis of electron microscope studies. These studies demonstrated that all the types of neoplasia in animals of the species examined are produced by a virus of certain characteristic morphological properties similar, if not identical, in the mode of development in all types of neoplasia in animals, as shown in Fig. 1.


Author(s):  
J.R. Pfeiffer ◽  
J.C. Seagrave ◽  
C. Wofsy ◽  
J.M. Oliver

In RBL-2H3 rat leukemic mast cells, crosslinking IgE-receptor complexes with anti-IgE antibody leads to degranulation. Receptor crosslinking also stimulates the redistribution of receptors on the cell surface, a process that can be observed by labeling the anti-IgE with 15 nm protein A-gold particles as described in Stump et al. (1989), followed by back-scattered electron imaging (BEI) in the scanning electron microscope. We report that anti-IgE binding stimulates the redistribution of IgE-receptor complexes at 37“C from a dispersed topography (singlets and doublets; S/D) to distributions dominated sequentially by short chains, small clusters and large aggregates of crosslinked receptors. These patterns can be observed (Figure 1), quantified (Figure 2) and analyzed statistically. Cells incubated with 1 μg/ml anti-IgE, a concentration that stimulates maximum net secretion, redistribute receptors as far as chains and small clusters during a 15 min incubation period. At 3 and 10 μg/ml anti-IgE, net secretion is reduced and the majority of receptors redistribute rapidly into clusters and large aggregates.


Sign in / Sign up

Export Citation Format

Share Document