scholarly journals Implementasi Transformasi Haar Wavelet untuk Deteksi Citra Jeruk Nipis yang Busuk

2016 ◽  
Vol 12 (2) ◽  
Author(s):  
Lidya Andriani Sunjoyo ◽  
R. Gunawan Santosa ◽  
Kristian Adi Nugraha

Lime is a fruit that has been widely cultivated and used in Indonesia. Many products use this fruit in the production process. The process of sorting fruit is undeniably a very substantial early process. It is necessary for large-scale  be aware of this in term of result and time required for the sorting process. Pattern Recognition is a discipline that focuses on classifying or picturing an object based on characteristics or main attribute of the object. In this research, the author implements Haar Wavelet Transformation method by characteristic extraction based on colour and texture ,  performs classification using K-Nearest Neighbor (k-NN) to detect indication of rotten lime and the grade of k on k-NN so the accuracy of the result could be acquired. Based on analysis result, Haar Wavelet Transformation method is able to be implemented to detect the indication of rotten lime and most optimal accuracy level of this system reaches the number of 85 percent.

2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


2018 ◽  
Vol 5 (1) ◽  
pp. 8 ◽  
Author(s):  
Ajib Susanto ◽  
Daurat Sinaga ◽  
Christy Atika Sari ◽  
Eko Hari Rachmawanto ◽  
De Rosal Ignatius Moses Setiadi

The classification of Javanese character images is done with the aim of recognizing each character. The selected classification algorithm is K-Nearest Neighbor (KNN) at K = 1, 3, 5, 7, and 9. To improve KNN performance in Javanese character written by the author, and to prove that feature extraction is needed in the process image classification of Javanese character. In this study selected Local Binary Patter (LBP) as a feature extraction because there are research objects with a certain level of slope. The LBP parameters are used between [16 16], [32 32], [64 64], [128 128], and [256 256]. Experiments were performed on 80 training drawings and 40 test images. KNN values after combination with LBP characteristic extraction were 82.5% at K = 3 and LBP parameters [64 64].


Author(s):  
Bao Bing-Kun ◽  
Yan Shuicheng

Graph-based learning provides a useful approach for modeling data in image annotation problems. In this chapter, the authors introduce how to construct a region-based graph to annotate large scale multi-label images. It has been well recognized that analysis in semantic region level may greatly improve image annotation performance compared to that in whole image level. However, the region level approach increases the data scale to several orders of magnitude and lays down new challenges to most existing algorithms. To this end, each image is firstly encoded as a Bag-of-Regions based on multiple image segmentations. And then, all image regions are constructed into a large k-nearest-neighbor graph with efficient Locality Sensitive Hashing (LSH) method. At last, a sparse and region-aware image-based graph is fed into the multi-label extension of the Entropic graph regularized semi-supervised learning algorithm (Subramanya & Bilmes, 2009). In combination they naturally yield the capability in handling large-scale dataset. Extensive experiments on NUS-WIDE (260k images) and COREL-5k datasets well validate the effectiveness and efficiency of the framework for region-aware and scalable multi-label propagation.


Author(s):  
M. Jupri ◽  
Riyanarto Sarno

The achievement of accepting optimal tax need effective and efficient tax supervision can be achieved by classifying taxpayer compliance to tax regulations. Considering this issue, this paper proposes the classification of taxpayer compliance using data mining algorithms; i.e. C4.5, Support Vector Machine, K-Nearest Neighbor, Naive Bayes, and Multilayer Perceptron based on the compliance of taxpayer data. The taxpayer compliance can be classified into four classes, which are (1) formal and material compliant taxpayers, (2) formal compliant taxpayers, (3) material compliant taxpayers, and (4) formal and material non-compliant taxpayers. Furthermore, the results of data mining algorithms are compared by using Fuzzy AHP and TOPSIS to determine the best performance classification based on the criteria of Accuracy, F-Score, and Time required. Selection of the taxpayer's priority for more detailed supervision at each level of taxpayer compliance is ranked using Fuzzy AHP and TOPSIS based on criteria of dataset variables. The results show that C4.5 is the best performance classification and achieves preference value of 0.998; whereas the MLP algorithm results from the lowest preference value of 0.131. Alternative taxpayer A233 is the top priority taxpayer with a preference value of 0.433; whereas alternative taxpayer A051 is the lowest priority taxpayer with a preference value of 0.036.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7269
Author(s):  
Ling Ruan ◽  
Ling Zhang ◽  
Tong Zhou ◽  
Yi Long

The weighted K-nearest neighbor algorithm (WKNN) is easily implemented, and it has been widely applied. In the large-scale positioning regions, using all fingerprint data in matching calculations would lead to high computation expenses, which is not conducive to real-time positioning. Due to signal instability, irrelevant fingerprints reduce the positioning accuracy when performing the matching calculation process. Therefore, selecting the appropriate fingerprint data from the database more quickly and accurately is an urgent problem for improving WKNN. This paper proposes an improved Bluetooth indoor positioning method using a dynamic fingerprint window (DFW-WKNN). The dynamic fingerprint window is a space range for local fingerprint data searching instead of universal searching, and it can be dynamically adjusted according to the indoor pedestrian movement and always covers the maximum possible range of the next positioning. This method was tested and evaluated in two typical scenarios, comparing two existing algorithms, the traditional WKNN and the improved WKNN based on local clustering (LC-WKNN). The experimental results show that the proposed DFW-WKNN algorithm enormously improved both the positioning accuracy and positioning efficiency, significantly, when the fingerprint data increased.


Author(s):  
Bingming Wang ◽  
Shi Ying ◽  
Guoli Cheng ◽  
Rui Wang ◽  
Zhe Yang ◽  
...  

Logs play an important role in the maintenance of large-scale systems. The number of logs which indicate normal (normal logs) differs greatly from the number of logs that indicate anomalies (abnormal logs), and the two types of logs have certain differences. To automatically obtain faults by K-Nearest Neighbor (KNN) algorithm, an outlier detection method with high accuracy, is an effective way to detect anomalies from logs. However, logs have the characteristics of large scale and very uneven samples, which will affect the results of KNN algorithm on log-based anomaly detection. Thus, we propose an improved KNN algorithm-based method which uses the existing mean-shift clustering algorithm to efficiently select the training set from massive logs. Then we assign different weights to samples with different distances, which reduces the negative effect of unbalanced distribution of the log samples on the accuracy of KNN algorithm. By comparing experiments on log sets from five supercomputers, the results show that the method we proposed can be effectively applied to log-based anomaly detection, and the accuracy, recall rate and F measure with our method are higher than those of traditional keyword search method.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1472 ◽  
Author(s):  
Thang Bui Quy ◽  
Sohaib Muhammad ◽  
Jong-Myon Kim

This paper proposes a reliable leak detection method for water pipelines under different operating conditions. This approach segments acoustic emission (AE) signals into short frames based on the Hanning window, with an overlap of 50%. After segmentation from each frame, an intermediate quantity, which contains the symptoms of a leak and keeps its characteristic adequately stable even when the environmental conditions change, is calculated. Finally, a k-nearest neighbor (KNN) classifier is trained using features extracted from the transformed signals to identify leaks in the pipeline. Experiments are conducted under different conditions to confirm the effectiveness of the proposed method. The results of the study indicate that this method offers better quality and more reliability than using features extracted directly from the AE signals to train the KNN classifier. Moreover, the proposed method requires less training data than existing techniques. The transformation method is highly accurate and works well even when only a small amount of data is used to train the classifier, whereas the direct AE-based method returns misclassifications in some cases. In addition, robustness is also tested by adding Gaussian noise to the AE signals. The proposed method is more resistant to noise than the direct AE-based method.


Sign in / Sign up

Export Citation Format

Share Document