scholarly journals Influence of Tithonia Diversifolia on Maize (Zea mays L.) Yield, Fertility and Infiltration Status of Two Clay Varied Soils

2019 ◽  
Vol 8 (1) ◽  
pp. 114-119
Author(s):  
Olufemi Gabriel Dayo-Olagbende ◽  
Oluwawemimo Omowumi Akingbola ◽  
Gbolahan Saheed Afolabi ◽  
Babatunde Sunday Ewulo

Towards a more sustainable soil management through recycling of readily available weeds in Akure, Nigeria, different rates of Tithonia diversifolia (tithonia) were compared on a field trial to evaluate its effect on soil properties. The experiment was sited at two locations in South gate of the Federal University of Technology, Akure. Prior to the field establishment, a composite soil sample was collected and analyzed for physico-chemical properties. The sites were cleared and tilled. The experiment was laid out in a Randomized Complete Block Design (RCBD) with three replicates. The treatments consisted of three levels of tithonia application which are 0, 3 and 6 t ha-1. Each experimental unit size was 2 m x 2 m with 1 m alleyway. Maize (Zea mays L. var.TZB-SR) seeds were sown at a spacing of 75 cm by 25 cm and 10 were randomly sampled per plot for growth and yield parameters. Data were collected on maize yield and soil physical and chemical properties after harvest to ascertain sustainability of the mulch material after cropping. Application of tithonia mulch improved growth, and yield indices of maize as well as soil physical and chemical properties. The contents of soil total N, exchangeable cations, , CEC, Organic matter content, total porosity, moisture content and infiltration rate were found to significantly (p>0.05)  increase in treatments with tithonia mulch. The best result was from the application rate 6 tha-1 because it improved and left the soil conserved after harvesting maize. Similar trends were observed at the two sites despite variation in inherent soil properties.

2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


2020 ◽  
Vol 5 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Aruna Olasekan Adekiya ◽  
Taiwo Michael Agbede ◽  
Wutem Sunny Ejue ◽  
Christopher Muyiwa Aboyeji ◽  
Oluwagbenga Dunsin ◽  
...  

AbstractBiochar has a low chemical composition and is recalcitrant to degradation. For good soil fertility and nutrient use efficiency of crops it becomes imperative that addition of a fast releasing nutrient source to biochar be sought. Therefore, studies were conducted in 2017 and 2018 to evaluate the effects of biochar with poultry manure (PM) and NPK fertilizer on soil properties, growth and yield of ginger. Treatments evaluated were: biochar applied alone at 15 t ha-1 , PM applied alone at 15 t ha-1, NPK fertilizer applied alone at 200 kg ha-1, biochar applied at 15 t ha-1 with poultry manure applied at 15 t ha-1 (B+PM), biochar applied at 15 t ha-1 with NPK fertilizer applied at 200 kg ha-1 (B+NPK) and a control with no amendment whatsoever. The experimental design was a randomized complete block design with three replications. Biochar, PM, NPK fertilizer alone or B+PM and B+NPK improved soil physical and chemical properties, growth and yield of ginger compared to no amendment (control). NPK fertilizer did not improve soil physical properties nor increased pH, OM, Ca and Mg significantly. B+PM and B+NPK improved soil physical and chemical properties, growth and ginger yield compared to their sole forms. Although B+PM had better soil physical properties, B+NPK increased yield and growth of ginger compared to B+PM. B+NPK increased the yield of ginger by 12.2% and 10.6% in 2017 and 2018, respectively compared with B+PM. B+NPK also increased the yield of ginger by 49.2% and 50.3% in 2017 and 2018, respectively compared to biochar alone. This was related to high presence of nutrients in B+NPK especially N and K which are important for ginger rhizome formation.


2019 ◽  
pp. 68-73

The decline in soil organic matter, nutrient depletion, and loss of soil fertility due to soil degradation contribute to low agricultural productivity. Organic amend- ments (OAs) have the potentials to reverse soil degradation processes by improv- ing the soil's physical and chemical properties and consequently improve crop growth and yield performance. At Cranfield University, United Kingdom, a greenhouse study investigated the effects of Mushroom Compost, Anaerobic Di- gestate Waste, and Poultry Manure amendments applied at 10 t ha-1 and 30 t ha-1 equivalent rates on the physical and chemical properties of degraded soil. The treatments were laid out in the greenhouse in a completely randomized design replicated four times. The results showed that all the OA treatments significantly increased the soil water holding capacity, total porosity, and significantly reduced bulk density when compared with the un-amended control treatment. Further, the OA treatments showed significant increases in the soil Total-P, Olsen-P, Total-N, total oxides of N, ammonium-N, Available-K, and Available-Mg, relative to the control treatment. The results demonstrate the effectiveness of these OAs in im- proving soils’ physical and chemical properties, and so enhancing soil health and overall ecosystem functioning. The study demonstrated that these OAs improve the physicochemical properties of degraded so


2012 ◽  
Vol 524-527 ◽  
pp. 2139-2142
Author(s):  
Shu Li Wang ◽  
Chao Ma ◽  
Wei Bin Yuan

The soil physical and chemical properties of four densities (A:2500/hm2,B:3300/hm2,C:4400/hm2,D:6600/hm2) of hybrid Larch plantations, Larix olgensis plantation(E) and Quercus mandsurica forest(F) were studied in Jiangshanjiao forest farm of Heilongjiang province of China. Soil bulk density, soil porosity, total N, total P, available N and available P were affected significantly by plantation density in hybrid Larch plantations. The lowest surface soil bulk density was in density 2500/hm2. Soil porosity of density 2500/hm2and 3300/hm2was bigger than that of density 4400/hm2and density 6600/hm2. Total N, total P and available N of density 4400/hm2and 3300/hm2were higher than that of density 6600/hm2and density 2500/hm2. Total N, total P, available N and available P of hybrid Larch plantations were not lower than that of Larix olgensis plantation. The results of the soil physical and chemical properties under different densities of hybrid Larch plantations and different types of forest seems to confirm that hybrid Larch plantation did not decreased the soil fertility, and the hybrid Larch plantation with densities of 3300/hm2and 4400/hm2could be conductive to improving the soil quality. The results would provide the theories basis for manage the hybrid Larch plantations.


2020 ◽  
Author(s):  
Fentanesh Haile Buruso ◽  
Zenebe Admasu Teferi

Abstract BackgroundThe decrease in the area under natural vegetation and its conversion into other types of use has resulted in resource degradation including soil quality loss. Soil properties response to changes in land use/ cover has shown spatial and temporal variations. Hence this study was carried out to examine the influence of land use/ cover changes on physical and chemical properties of the soils in Rib watershed. Soil samples were taken over three selected land use/ covers (natural forest, grazing and cultivated lands) in two agro- ecological zones (Dega and High Dega). Multivariate analysis of variance (MNOVA) and Pearson’s correlation was computed. ResultsThe study revealed that land use/ cover and altitude have influenced physical and chemical properties of the soil in the study watershed. Significant difference in distribution of soil texture, BD, OC, TN and pH among land use/ covers have been observed. Natural forest had higher OC, OC stock and TN than grazing and cultivated lands. The mean OC stock ranged from 188.32 t/ha in natural forest to 72.75t/ha in cultivated lands. Soil pH was slightly higher for natural forests and lower in the soils of grazing and cultivated lands. Significant difference (P<0.05) among the two agro ecologies were also observed in OC, Ca2+, clay, and silt.. ConclusionTherefore, land use/ cover changes have affected the concentration of TN, OC, increase soil acidity and compaction that can affect productive of soils and production of crops.


2011 ◽  
Vol 47 (3) ◽  
pp. 477-488 ◽  
Author(s):  
A. O. ADEKIYA ◽  
S. O. OJENIYI ◽  
T. M. AGBEDE

SUMMARYExperimental data on tillage requirement of cocoyam (Xanthosoma sagittifolium) are needed to identify the most suitable tillage methods for managing the fragile Alfisols of the humid tropics to ensure sustained productivity. Hence, five tillage methods were compared as to their effects on soil physical and chemical properties, and growth and yield of cocoyam on an Alfisol at Owo in the forest-savanna transition zone of southwest Nigeria. The experiment consisted of five tillage methods: manual clearing (MC), manual ridging (MR), manual mounding (MM), ploughing + harrowing (P + H) and ploughing + harrowing twice (P + 2 H) were used for three years at two sites in a randomized complete block design with three replications. In the first two years (2007 and 2008), P + H produced the least soil bulk density and highest growth and yield, whereas in the third year (2009), MC produced the lowest soil bulk density and best performance of cocoyam. Manual clearing produced the best values of soil chemical properties in 2008 and 2009. Averaged over the three years, P + H, MR and MM had lower soil bulk density hence better growth and yield compared with P + 2 H and MC. Over the three years MC, MM, MR and P + H increased cocoyam cormel yield by 10, 21, 23 and 32%, respectively, over P + 2 H.The corresponding increases in corm yield were 7, 15, 13 and 21%, respectively. The multiple regressions revealed that bulk density and moisture content significantly influenced the yield of cocoyam. Soil chemical properties were not significant. Bulk density rather than soil chemical properties dictated the performance of cocoyam in an Alfisol of southwest Nigeria. Soil quality was degraded by P + 2H. For small farms, either MR or MM is recommended while P + H is recommended for large-scale farming of cocoyam.


2020 ◽  
Author(s):  
Mario Kirchhoff ◽  
Lars Engelmann ◽  
Lutz Leroy Zimmermann ◽  
Irene Marzolff ◽  
Manuel Seeger ◽  
...  

&lt;p&gt;The argan tree (Argania spinosa) populations, endemic to South Morocco, have been highly degraded. Although the argan tree is the source of the valuable argan oil and is protected by law, overbrowsing and -grazing as well as the intensification and expansion of agricultural land lead to tree and soil degradation. Young stands cannot establish themselves; undergrowth is scarce due to the semiarid/arid climate and thus, goats, sheep and dromedaries continually browse the trees. Canopy-covered areas decrease and are degraded while areas without vegetation cover between the argan trees increase.&lt;/p&gt;&lt;p&gt;On 30 test sites, 60 soil samples of tree and intertree areas were studied on their soil physical and chemical properties. 36 rainfall simulations and 60 single-ring infiltration measurements were conducted to measure potential differences between tree/intertree areas in their runoff/erosion and infiltration properties. Significant differences using a t-test were found for the studied parameters saturated hydraulic conductivity, pH, electric conductivity, percolation stability, total C-content, total N-content, K-content, Na-content and Mg-content. Surface runoff and soil erosion were not statistically significant, but showed similar trends due to the higher complexity of runoff formation. The soil covered by argan trees generally showed less signs of degradation than intertree areas. With ever-expanding intertree areas due to the lack of rejuvenation of argan trees a further degradation of the soil can be assumed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document