scholarly journals Effects of Different Organic Amendment Sources on the Physico Chemical Properties of A Nutrient Depleted Vertisol

2019 ◽  
pp. 68-73

The decline in soil organic matter, nutrient depletion, and loss of soil fertility due to soil degradation contribute to low agricultural productivity. Organic amend- ments (OAs) have the potentials to reverse soil degradation processes by improv- ing the soil's physical and chemical properties and consequently improve crop growth and yield performance. At Cranfield University, United Kingdom, a greenhouse study investigated the effects of Mushroom Compost, Anaerobic Di- gestate Waste, and Poultry Manure amendments applied at 10 t ha-1 and 30 t ha-1 equivalent rates on the physical and chemical properties of degraded soil. The treatments were laid out in the greenhouse in a completely randomized design replicated four times. The results showed that all the OA treatments significantly increased the soil water holding capacity, total porosity, and significantly reduced bulk density when compared with the un-amended control treatment. Further, the OA treatments showed significant increases in the soil Total-P, Olsen-P, Total-N, total oxides of N, ammonium-N, Available-K, and Available-Mg, relative to the control treatment. The results demonstrate the effectiveness of these OAs in im- proving soils’ physical and chemical properties, and so enhancing soil health and overall ecosystem functioning. The study demonstrated that these OAs improve the physicochemical properties of degraded so

2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


2020 ◽  
Author(s):  
Mario Kirchhoff ◽  
Lars Engelmann ◽  
Lutz Leroy Zimmermann ◽  
Irene Marzolff ◽  
Manuel Seeger ◽  
...  

<p>The argan tree (Argania spinosa) populations, endemic to South Morocco, have been highly degraded. Although the argan tree is the source of the valuable argan oil and is protected by law, overbrowsing and -grazing as well as the intensification and expansion of agricultural land lead to tree and soil degradation. Young stands cannot establish themselves; undergrowth is scarce due to the semiarid/arid climate and thus, goats, sheep and dromedaries continually browse the trees. Canopy-covered areas decrease and are degraded while areas without vegetation cover between the argan trees increase.</p><p>On 30 test sites, 60 soil samples of tree and intertree areas were studied on their soil physical and chemical properties. 36 rainfall simulations and 60 single-ring infiltration measurements were conducted to measure potential differences between tree/intertree areas in their runoff/erosion and infiltration properties. Significant differences using a t-test were found for the studied parameters saturated hydraulic conductivity, pH, electric conductivity, percolation stability, total C-content, total N-content, K-content, Na-content and Mg-content. Surface runoff and soil erosion were not statistically significant, but showed similar trends due to the higher complexity of runoff formation. The soil covered by argan trees generally showed less signs of degradation than intertree areas. With ever-expanding intertree areas due to the lack of rejuvenation of argan trees a further degradation of the soil can be assumed.</p>


2019 ◽  
Vol 8 (1) ◽  
pp. 114-119
Author(s):  
Olufemi Gabriel Dayo-Olagbende ◽  
Oluwawemimo Omowumi Akingbola ◽  
Gbolahan Saheed Afolabi ◽  
Babatunde Sunday Ewulo

Towards a more sustainable soil management through recycling of readily available weeds in Akure, Nigeria, different rates of Tithonia diversifolia (tithonia) were compared on a field trial to evaluate its effect on soil properties. The experiment was sited at two locations in South gate of the Federal University of Technology, Akure. Prior to the field establishment, a composite soil sample was collected and analyzed for physico-chemical properties. The sites were cleared and tilled. The experiment was laid out in a Randomized Complete Block Design (RCBD) with three replicates. The treatments consisted of three levels of tithonia application which are 0, 3 and 6 t ha-1. Each experimental unit size was 2 m x 2 m with 1 m alleyway. Maize (Zea mays L. var.TZB-SR) seeds were sown at a spacing of 75 cm by 25 cm and 10 were randomly sampled per plot for growth and yield parameters. Data were collected on maize yield and soil physical and chemical properties after harvest to ascertain sustainability of the mulch material after cropping. Application of tithonia mulch improved growth, and yield indices of maize as well as soil physical and chemical properties. The contents of soil total N, exchangeable cations, , CEC, Organic matter content, total porosity, moisture content and infiltration rate were found to significantly (p>0.05)  increase in treatments with tithonia mulch. The best result was from the application rate 6 tha-1 because it improved and left the soil conserved after harvesting maize. Similar trends were observed at the two sites despite variation in inherent soil properties.


2012 ◽  
Vol 524-527 ◽  
pp. 2139-2142
Author(s):  
Shu Li Wang ◽  
Chao Ma ◽  
Wei Bin Yuan

The soil physical and chemical properties of four densities (A:2500/hm2,B:3300/hm2,C:4400/hm2,D:6600/hm2) of hybrid Larch plantations, Larix olgensis plantation(E) and Quercus mandsurica forest(F) were studied in Jiangshanjiao forest farm of Heilongjiang province of China. Soil bulk density, soil porosity, total N, total P, available N and available P were affected significantly by plantation density in hybrid Larch plantations. The lowest surface soil bulk density was in density 2500/hm2. Soil porosity of density 2500/hm2and 3300/hm2was bigger than that of density 4400/hm2and density 6600/hm2. Total N, total P and available N of density 4400/hm2and 3300/hm2were higher than that of density 6600/hm2and density 2500/hm2. Total N, total P, available N and available P of hybrid Larch plantations were not lower than that of Larix olgensis plantation. The results of the soil physical and chemical properties under different densities of hybrid Larch plantations and different types of forest seems to confirm that hybrid Larch plantation did not decreased the soil fertility, and the hybrid Larch plantation with densities of 3300/hm2and 4400/hm2could be conductive to improving the soil quality. The results would provide the theories basis for manage the hybrid Larch plantations.


2019 ◽  
Vol 11 (12) ◽  
pp. 3369 ◽  
Author(s):  
Shuyue Feng ◽  
Hui Wen ◽  
Shimin Ni ◽  
Junguang Wang ◽  
Chongfa Cai

In the subtropical hilly areas of China, a collapsing gully, a particular type of permanent gully, poses a great threat to the productivity and sustainability of the local ecological and agricultural systems. However, few studies have been performed regarding the effects of collapsing gully erosion on soil degradation. The aim of this study was to evaluate the effects of collapsing gully erosion on soil-quality-related physical and chemical properties. The collapsing gullies that were severely affected by erosion processes were considered at three stages (initial, active and stable stages) and corresponding soil samples were collected to analyze the spatial variation of the soil physical and chemical quality at each stage. The changes in the properties were assumed to be considerable in the regions affected by the erosion process compared with those unaffected by this process. Soil physical properties were more susceptible than soil nutrients to collapsing gully erosion in different spatial locations. The soil quality index (SQI) system consists of total nitrogen (TN), total phosphorus (TP), pH, capillary porosity (CP), sand content (SA), soil cohesion (SC) and root density (RD). Collapsing gully erosion was found to affect the soil physical and chemical properties by progressively reducing the SQI. The mean SQI value was the lowest in the active stage of the collapsing gully, with a higher soil degradation. For the different spatial positions in the collapsing gullies, the scour channel showed the lowest SQI value. The limiting indicators varied in the different stages or spatial sites in the collapsing gullies.


2011 ◽  
Vol 47 (3) ◽  
pp. 477-488 ◽  
Author(s):  
A. O. ADEKIYA ◽  
S. O. OJENIYI ◽  
T. M. AGBEDE

SUMMARYExperimental data on tillage requirement of cocoyam (Xanthosoma sagittifolium) are needed to identify the most suitable tillage methods for managing the fragile Alfisols of the humid tropics to ensure sustained productivity. Hence, five tillage methods were compared as to their effects on soil physical and chemical properties, and growth and yield of cocoyam on an Alfisol at Owo in the forest-savanna transition zone of southwest Nigeria. The experiment consisted of five tillage methods: manual clearing (MC), manual ridging (MR), manual mounding (MM), ploughing + harrowing (P + H) and ploughing + harrowing twice (P + 2 H) were used for three years at two sites in a randomized complete block design with three replications. In the first two years (2007 and 2008), P + H produced the least soil bulk density and highest growth and yield, whereas in the third year (2009), MC produced the lowest soil bulk density and best performance of cocoyam. Manual clearing produced the best values of soil chemical properties in 2008 and 2009. Averaged over the three years, P + H, MR and MM had lower soil bulk density hence better growth and yield compared with P + 2 H and MC. Over the three years MC, MM, MR and P + H increased cocoyam cormel yield by 10, 21, 23 and 32%, respectively, over P + 2 H.The corresponding increases in corm yield were 7, 15, 13 and 21%, respectively. The multiple regressions revealed that bulk density and moisture content significantly influenced the yield of cocoyam. Soil chemical properties were not significant. Bulk density rather than soil chemical properties dictated the performance of cocoyam in an Alfisol of southwest Nigeria. Soil quality was degraded by P + 2H. For small farms, either MR or MM is recommended while P + H is recommended for large-scale farming of cocoyam.


2017 ◽  
Vol 35 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Maristela Watthier ◽  
Magnólia AS Silva ◽  
José E Schwengber ◽  
Maria H Fermino ◽  
Tiago V Custódio

ABSTRACT Different properties of substrates based on tung compost (TC), carbonized rice husk (CRH) and earthworm humus (H) were analyzed, besides the effect of the formulations on the production of lettuce seedlings, cv. Veneranda. The experiment was carried out in Pelotas, Rio Grande do Sul State, Brazil, from December 2012 to February 2013, in a greenhouse, using completely randomized design with seven treatments and three replications. The used substrates were formulated on a volume basis: T1= commercial substrate S10® (control); T2= 90% carbonized rice husk (CRH) + 10% humus (H); T3= 75% CRH + 15% tung compost (TC) + 10% H; T4= 55% CRH + 35% TC + 10% H; T5= 35% CRH + 55% TC + 10% H; T6= 15% CRH + 75% TC + 10% H; T7= 90% TC + 10% H. Seedlings were produced in polystyrene trays with 200 cells, being evaluated 35 days after sowing. The substrate with larger proportion of CRH (T2 with 90% CRH) showed suitable dry density (DD) and total porosity (TP), high pH and aeration space (AS), low easily available water (EAW), electric conductivity (EC), and nutrient content, constituting an inert substrate, not being indicated as substrate due to the lower development of the seedlings. Using 15% TC, an increase was noticed in DD, AEW, EC and nutrients and, a decrease in TP, AS and pH due to, mainly, the size of tung compost particles, which accommodated themselves and altered physical and chemical properties of the substrates. Substrates with 90% and 75% TC (T7 and T6) provided the greatest shoot length, fresh and dry shoot mass and leaf area for lettuce seedlings due to higher nutrient content, also considering physical and chemical properties of these substrates. Pure CRH is not indicated to be used as substrate, but mixed with tung compost (T6), it provides high quality seedlings. Tung compost was effective in producing lettuce seedlings, since the composting is able to eliminate phytotoxic substances from this material which can hinder the seedling growth.


2020 ◽  
pp. 9-23
Author(s):  
A. T. Gani ◽  
T. Bako ◽  
A. Christopher

The aim of this study was to examine the effects of seasonal flooding on the properties of floodplain soils of Wukari Area of Taraba state. The treatments consisted of five different locations of Gidan-Idi, Gindin-Dorowa, Tsokundi, Rafin-Kada and Nwuko and three different soil sample depths of 0-20 cm, 20-40 cm, and 40-60 cm laid out in a completely randomized design (CRD) and replicated three times. Soil samples were collected from each plot in 2016 and 2017. All soil samples were analyzed for physical and chemical properties. The results obtained were subjected to analysis of variance and means separated using F-LSD test at p≤.05. The results of the soil properties analysis showed that some of the determined parameters were significantly different at the different sample locations at p≤.05. The soils of Wukari Floodplains are mostly clay loam in texture having very slightly acid to neutral soil reaction, moderate organic matter, low total N, moderate available P, low exchangeable bases and CEC. The flood plain soils were moderate in soil fertility, a confirmation of the general characteristic of Savanna soils. The soils were not deficient in micronutrients. Seasonal flooding had significant (positive) influence on some physical and chemical properties of the flood plains most particularly at Rafin-Kada.


2014 ◽  
Vol 3 (1) ◽  
pp. 110-122
Author(s):  
Abul Soud ◽  
M. A., M. S. A. Emam ◽  
M. A. A. Abdrabbo ◽  
F. A. Hashem ◽  
Shaimaa H. Abd-Elrahman

The need for extend the urban horticulture to cover the food security demands, to mitigate CO2 emissions and avoid the extreme heat waves drive this study to investigate the ability of using soilless culture systems, vermicomposting technology and net cover in producing vegetables in urban area in summer season. The aim of this study was to determine the effect of different vermicompost rates mixed with the standard substrate peat moss: perlite (perlite: peat moss: vermicompost (45:45:10) (Mix.10%), perlite: peat moss: vermicompost (40:40:20) (Mix.20%), perlite: peat moss: vermicompost (35:35:30) (Mix.30%) and perlite: peat moss (50:50 V/V) (Control) under three microclimate conditions (plants covered with black net, white net and without cover) on vegetative growth and yield of sweet pepper (Capsicum annuum L. cv. Reda) grown in pots culture during summer seasons of 2012 and 2013 at the Central Laboratory for Agricultural Climate, Agricultural Research Center, Dokki, Giza Governorate. Physical and chemical properties of substrates, vegetative growth and yield characteristics, agrometerological data and mineral contents were determined. The obtained data indicated that vermicomposting could contribute in mitigate CO2 emission, save the essential nutrients and energy via recycling the urban organic wastes to vermicompost. The physical and chemical properties were affected by vermicompost. The best vegetative growth and yield of sweet pepper were given by (Mix.20%) vermicompost mixture followed by (Mix.10%) and (Mix.30%) vermicompost mixture. There were also significant differences between cover net treatments in affecting vegetative growth and yield of pepper, the white net was superior for producing pepper during the summer season; while the black net gave the lowest plant growth and yield. The best treatment was (Mix.20%) vermicompost mixture with white net cover, while the lowest vegetative growth and yield were obtained by (Control) vermicompost mixture with black cover net during the two tested seasons. These results suggested that vermicomposting and green roof can be used in urban area for producing food instead of incineration the urban organic wastes or imported food from rural area and using white cover net to improve the pepper growth and productivity during summer season.


Sign in / Sign up

Export Citation Format

Share Document