scholarly journals Proving the 6d Cardy formula and matching global gravitational anomalies

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Chi-Ming Chang ◽  
Martin Fluder ◽  
Ying-Hsuan Lin ◽  
Yifan Wang

A Cardy formula for 6d superconformal field theories (SCFTs) conjectured by Di Pietro and Komargodski in [1] governs the universal behavior of the supersymmetric partition function on S^1_\beta \times S^5Sβ1×S5 in the limit of small \betaβ and fixed squashing of the S^5S5. For a general 6d SCFT, we study its 5d effective action, which is dominated by the supersymmetric completions of perturbatively gauge-invariant Chern-Simons terms in the small \betaβ limit. Explicitly evaluating these supersymmetric completions gives the precise squashing dependence in the Cardy formula. For SCFTs with a pure Higgs branch (also known as very Higgsable SCFTs), we determine the Chern-Simons levels by explicitly going onto the Higgs branch and integrating out the Kaluza-Klein modes of the 6d fields on S^1_\betaSβ1. We then discuss tensor branch flows, where an apparent mismatch between the formula in [1] and the free field answer requires an additional contribution from BPS strings. This ``missing contribution’’ is further sharpened by the relation between the fractional part of the Chern-Simons levels and the (mixed) global gravitational anomalies of the 6d SCFT. We also comment on the Cardy formula for 4d \mathcal{N}=2𝒩=2 SCFTs in relation to Higgs branch and Coulomb branch flows.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Lakshya Bhardwaj ◽  
Patrick Jefferson ◽  
Hee-Cheol Kim ◽  
Houri-Christina Tarazi ◽  
Cumrun Vafa

Abstract We study 6d superconformal field theories (SCFTs) compactified on a circle with arbitrary twists. The theories obtained after compactification, often referred to as 5d Kaluza-Klein (KK) theories, can be viewed as starting points for RG flows to 5d SCFTs. According to a conjecture, all 5d SCFTs can be obtained in this fashion. We compute the Coulomb branch prepotential for all 5d KK theories obtainable in this manner and associate to these theories a smooth local genus one fibered Calabi-Yau threefold in which is encoded information about all possible RG flows to 5d SCFTs. These Calabi-Yau threefolds provide hitherto unknown M-theory duals of F-theory configurations compactified on a circle with twists. For certain exceptional KK theories that do not admit a standard geometric description we propose an algebraic description that appears to retain the properties of the local Calabi-Yau threefolds necessary to determine RG flows to 5d SCFTs, along with other relevant physical data.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hee-Cheol Kim ◽  
Minsung Kim ◽  
Sung-Soo Kim ◽  
Ki-Hong Lee

Abstract We propose a systematic approach to computing the BPS spectrum of any 5d/6d supersymmetric quantum field theory in Coulomb phases, which admits either gauge theory descriptions or geometric descriptions, based on the Nakajima-Yoshioka’s blowup equations. We provide a significant generalization of the blowup equation approach in terms of both properly quantized magnetic fluxes on the blowup $$ \hat{\mathrm{\mathbb{C}}} $$ ℂ ̂ 2 and the effective prepotential for 5d/6d field theories on the Omega background which is uniquely determined by the Chern-Simons couplings on their Coulomb branches. We employ our method to compute BPS spectra of all rank-1 and rank-2 5d Kaluza-Klein (KK) theories descending from 6d $$ \mathcal{N} $$ N = (1, 0) superconformal field theories (SCFTs) compactified on a circle with/without twist. We also discuss various 5d SCFTs and KK theories of higher ranks, which include a few exotic cases such as new rank-1 and rank-2 5d SCFTs engineered with frozen singularity as well as the 5d SU(3)8 gauge theory currently having neither a brane web nor a smooth shrinkable geometric description. The results serve as non-trivial checks for a large class of non-trivial dualities among 5d theories and also as independent evidences for the existence of certain exotic theories.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Mario Martone

Abstract We derive explicit formulae to compute the a and c central charges of four dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) directly from Coulomb branch related quantities. The formulae apply at arbitrary rank. We also discover general properties of the low-energy limit behavior of the flavor symmetry of $$ \mathcal{N} $$ N = 2 SCFTs which culminate with our $$ \mathcal{N} $$ N = 2 UV-IR simple flavor condition. This is done by determining precisely the relation between the integrand of the partition function of the topologically twisted version of the 4d $$ \mathcal{N} $$ N = 2 SCFTs and the singular locus of their Coulomb branches. The techniques developed here are extensively applied to many rank-2 SCFTs, including new ones, in a companion paper.This manuscript is dedicated to the memory of Rayshard Brooks, George Floyd, Breonna Taylor and the countless black lives taken by US police forces and still awaiting justice. Our hearts are with our colleagues of color who suffer daily the consequences of this racist world.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Andreas P. Braun ◽  
Jin Chen ◽  
Babak Haghighat ◽  
Marcus Sperling ◽  
Shuhang Yang

Abstract We study circle compactifications of 6d superconformal field theories giving rise to 5d rank 1 and rank 2 Kaluza-Klein theories. We realise the resulting theories as M-theory compactifications on local Calabi-Yau 3-folds and match the prepotentials from geometry and field theory. One novelty in our approach is that we include explicit dependence on bare gauge couplings and mass parameters in the description which in turn leads to an accurate parametrisation of the prepotential including all parameters of the field theory. We find that the resulting geometries admit “fibre-base” duality which relates their six-dimensional origin with the purely five-dimensional quantum field theory interpretation. The fibre-base duality is realised simply by swapping base and fibre curves of compact surfaces in the local Calabi-Yau which can be viewed as the total space of the anti-canonical bundle over such surfaces. Our results show that such swappings precisely occur for surfaces with a zero self-intersection of the base curve and result in an exchange of the 6d and 5d pictures.


2011 ◽  
Vol 26 (37) ◽  
pp. 2813-2821
Author(s):  
PATRICIO GAETE

We consider the static quantum potential for a gauge theory which includes a light massive vector field interacting with the familiar U (1) QED photon via a Chern–Simons-like coupling, by using the gauge-invariant, but path-dependent, variables formalism. An exactly screening phase is then obtained, which displays a marked departure of a qualitative nature from massive axionic electrodynamics. The above static potential profile is similar to that encountered in axionic electrodynamics consisting of a massless axion-like field, as well as to that encountered in the coupling between the familiar U (1) QED photon and a second massive gauge field living in the so-called U (1)h hidden-sector, inside a superconducting box.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Marieke van Beest ◽  
Antoine Bourget ◽  
Julius Eckhard ◽  
Sakura Schäfer-Nameki

Abstract We derive the structure of the Higgs branch of 5d superconformal field theories or gauge theories from their realization as a generalized toric polygon (or dot diagram). This approach is motivated by a dual, tropical curve decomposition of the (p, q) 5-brane-web system. We define an edge coloring, which provides a decomposition of the generalized toric polygon into a refined Minkowski sum of sub-polygons, from which we compute the magnetic quiver. The Coulomb branch of the magnetic quiver is then conjecturally identified with the 5d Higgs branch. Furthermore, from partial resolutions, we identify the symplectic leaves of the Higgs branch and thereby the entire foliation structure. In the case of strictly toric polygons, this approach reduces to the description of deformations of the Calabi-Yau singularities in terms of Minkowski sums.


1997 ◽  
Vol 12 (23) ◽  
pp. 1687-1697
Author(s):  
Daniel C. Cabra ◽  
Gerardo L. Rossini

We give explicit field theoretical representations for the observables of (2+1)-dimensional Chern–Simons theory in terms of gauge-invariant composites of 2-D WZW fields. To test our identification we compute some basic Wilson loop correlators and re-obtain the known results.


2004 ◽  
Vol 19 (22) ◽  
pp. 1695-1700 ◽  
Author(s):  
PATRICIO GAETE

For a recently proposed pure gauge theory in three dimensions, without a Chern–Simons term, we calculate the static interaction potential within the structure of the gauge-invariant variables formalism. As a consequence, a confining potential is obtained. This result displays a marked qualitative departure from the usual Maxwell–Chern–Simons theory.


1994 ◽  
Vol 09 (18) ◽  
pp. 1695-1700 ◽  
Author(s):  
O.M. DEL CIMA

One discusses the tree-level unitarity and presents asymptotic behavior of scattering amplitudes for three-dimensional gauge-invariant models where complex Chern- Simons-Maxwell fields (with and without a Proca-like mass) are coupled to an Abelian gauge field.


Sign in / Sign up

Export Citation Format

Share Document