scholarly journals Goldstone equivalence and high energy electroweak physics

2020 ◽  
Vol 8 (5) ◽  
Author(s):  
Gabriel Cuomo ◽  
Luca Vecchi ◽  
Andrea Wulzer

The transition between the broken and unbroken phases of massive gauge theories, namely the rearrangement of longitudinal and Goldstone degrees of freedom that occurs at high energy, is not manifestly smooth in the standard formalism. The lack of smoothness concretely shows up as an anomalous growth with energy of the longitudinal polarization vectors, as they emerge in Feynman rules both for real on-shell external particles and for virtual particles from the decomposition of the gauge field propagator. This makes the characterization of Feynman amplitudes in the high-energy limit quite cumbersome, which in turn poses peculiar challenges in the study of Electroweak processes at energies much above the Electroweak scale. We develop a Lorentz-covariant formalism where polarization vectors are well-behaved and, consequently, energy power-counting is manifest at the level of individual Feynman diagrams. This allows us to prove the validity of the Effective $W$ Approximation and, more generally, the factorization of collinear emissions and to compute the corresponding splitting functions at the tree-level order. Our formalism applies at all orders in perturbation theory, for arbitrary gauge groups and generic linear gauge-fixing functionals. It can be used to simplify Standard Model loop calculations by performing the high-energy expansion directly on the Feynman diagrams. This is illustrated by computing the radiative corrections to the decay of the top quark.

1999 ◽  
Vol 14 (35) ◽  
pp. 2447-2452
Author(s):  
B. B. DEO ◽  
L. P. SINGH

The 12 bosonic degrees of freedom of the standard model (SM) are exactly matched by fermionic degrees of freedom of a single colored quark, e.g. top. Indeed, we construct a charge involving top-quark, gauge and Higgs fields which satisfy usual supersymmetry algebra. The colored quark states behave like the superpartners of gauge and Higgs bosons and vice versa. When this SUSY is broken, a mass relation must be satisfied at the tree level from which the mass of the Higgs is predicted to be 300.5±11 GeV.


2001 ◽  
Vol 16 (23) ◽  
pp. 1493-1503 ◽  
Author(s):  
ICHIRO ODA

In cases of both Abelian and non-Abelian gauge groups, we consider the Higgs mechanism in topologically massive gauge theories in an arbitrary space–time dimension. It is shown that the presence of a topological term makes it possible to shift mass of gauge fields in a nontrivial way compared to the conventional value at the classical tree level. We correct the previous misleading statement with respect to the counting of physical degrees of freedom, where it is shown that gauge fields become massive by "eating" the Nambu–Goldstone boson and a higher-rank tensor field, but a new massless scalar appears in the spectrum so the number of physical degrees of freedom remains unchanged before and after the spontaneous symmetry breakdown. Some related phenomenological implications and applications to superstring theory are briefly commented.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sarah Hoback ◽  
Sarthak Parikh

Abstract We conjecture a simple set of “Feynman rules” for constructing n-point global conformal blocks in any channel in d spacetime dimensions, for external and exchanged scalar operators for arbitrary n and d. The vertex factors are given in terms of Lauricella hypergeometric functions of one, two or three variables, and the Feynman rules furnish an explicit power-series expansion in powers of cross-ratios. These rules are conjectured based on previously known results in the literature, which include four-, five- and six-point examples as well as the n-point comb channel blocks. We prove these rules for all previously known cases, as well as two new ones: the seven-point block in a new topology, and all even-point blocks in the “OPE channel.” The proof relies on holographic methods, notably the Feynman rules for Mellin amplitudes of tree-level AdS diagrams in a scalar effective field theory, and is easily applicable to any particular choice of a conformal block beyond those considered in this paper.


Author(s):  
Zening Lin ◽  
Tao Jiang ◽  
Jianzhong Shang

Abstract In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored. Graphic abstract


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Matthew J. Dolan ◽  
Tomasz P. Dutka ◽  
Raymond R. Volkas

Abstract We analyse the experimental limits on the breaking scale of Pati-Salam extensions of the Standard Model. These arise from the experimental limits on rare-meson decay processes mediated at tree-level by the vector leptoquark in the model. This leptoquark ordinarily couples to both left- and right-handed SM fermions and therefore the meson decays do not experience a helicity suppression. We find that the current limits vary from $$ \mathcal{O} $$ O (80–2500) TeV depending on the choice of matrix structure appearing in the relevant three-generational charged-current interactions. We extensively analyse scenarios where additional fermionic degrees of freedom are introduced, transforming as complete Pati-Salam multiplets. These can lower the scales of Pati-Salam breaking through mass-mixing within the charged-lepton and down-quark sectors, leading to a helicity suppression of the meson decay widths which constrain Pati-Salam breaking. We find four multiplets with varying degrees of viability for this purpose: an SU(2)L/R bidoublet, a pair of SU(4) decuplets and either an SU(2)L or SU(2)R triplet all of which contain heavy exotic versions of the SM charged leptons. We find that the Pati-Salam limits can be as low as $$ \mathcal{O} $$ O (5–150) TeV with the addition of these four multiplets. We also identify an interesting possible connection between the smallness of the neutrino masses and a helicity suppression of the Pati-Salam limits for three of the four multiplets.


2006 ◽  
Vol 23 (9) ◽  
pp. 2379-2382 ◽  
Author(s):  
Yue Chong-Xing ◽  
Wang Lei ◽  
Wang Li-Na ◽  
Zhang Yan-Ming

2007 ◽  
Vol 22 (25n28) ◽  
pp. 2121-2129 ◽  
Author(s):  
XIAO-GANG HE ◽  
HO-CHIN TSAI ◽  
TONG LI ◽  
XUE-QIAN LI

We study possible observational effects of scalar dark matter, the darkon D, in Higgs h and top quark t decay processes, h → DD and t → cDD in the minimal Standard Model (SM) and its two Higgs doublet model (THDM) extension supplemented with a SM singlet darkon scalar field D. We find that the darkon D can have a mass in the range of sub-GeV to several tens of GeV, interesting for LHC and ILC colliders, to produce the required dark matter relic density. In the SM with a darkon, t → cDD only occurs at loop level giving a very small rate, while the rate for Higgs decay h → DD can be large. In THDM III with a darkon, where tree level flavor changing neutral current (FCNC) interaction exists, a sizable rate for t → cDD is also possible.


2016 ◽  
Vol 56 (3) ◽  
pp. 149-163
Author(s):  
Vytautas Dūdėnas ◽  
Thomas Gajdosik

We present a basic formalism for using the Weyl spinor notation in Feynman rules. We focus on Weyl spinors with mixed Dirac and Majorana mass terms. To clarify the definitions we derive the Feynman rules from the path integral and present two examples: loop corrections for a fermion propagator and a tree level analysis of a seesaw toy model.


Sign in / Sign up

Export Citation Format

Share Document