scholarly journals Appendix D: Feynman Rules (Tree Level)

Keyword(s):  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sarah Hoback ◽  
Sarthak Parikh

Abstract We conjecture a simple set of “Feynman rules” for constructing n-point global conformal blocks in any channel in d spacetime dimensions, for external and exchanged scalar operators for arbitrary n and d. The vertex factors are given in terms of Lauricella hypergeometric functions of one, two or three variables, and the Feynman rules furnish an explicit power-series expansion in powers of cross-ratios. These rules are conjectured based on previously known results in the literature, which include four-, five- and six-point examples as well as the n-point comb channel blocks. We prove these rules for all previously known cases, as well as two new ones: the seven-point block in a new topology, and all even-point blocks in the “OPE channel.” The proof relies on holographic methods, notably the Feynman rules for Mellin amplitudes of tree-level AdS diagrams in a scalar effective field theory, and is easily applicable to any particular choice of a conformal block beyond those considered in this paper.


2016 ◽  
Vol 56 (3) ◽  
pp. 149-163
Author(s):  
Vytautas Dūdėnas ◽  
Thomas Gajdosik

We present a basic formalism for using the Weyl spinor notation in Feynman rules. We focus on Weyl spinors with mixed Dirac and Majorana mass terms. To clarify the definitions we derive the Feynman rules from the path integral and present two examples: loop corrections for a fermion propagator and a tree level analysis of a seesaw toy model.


2008 ◽  
Vol 23 (02) ◽  
pp. 211-232 ◽  
Author(s):  
DANIELE BETTINELLI ◽  
RUGGERO FERRARI ◽  
ANDREA QUADRI

Recently a perturbative theory has been constructed, starting from the Feynman rules of the nonlinear sigma model at the tree level in the presence of an external vector source coupled to the flat connection and of a scalar source coupled to the nonlinear sigma model constraint (flat connection formalism). The construction is based on a local functional equation, which overcomes the problems due to the presence (already at one loop) of nonchiral symmetric divergences. The subtraction procedure of the divergences in the loop expansion is performed by means of minimal subtraction of properly normalized amplitudes in dimensional regularization. In this paper we complete the study of this subtraction procedure by giving the formal proof that it is symmetric to all orders in the loopwise expansion. We provide further arguments on the issue that, within our subtraction strategy, only two parameters can be consistently used as physical constants.


2015 ◽  
Vol 8 (1) ◽  
pp. 1988-2004
Author(s):  
Renato Doria ◽  
M. J. Neves

A composite non-abelian model SU(N) × SU(N) is proposed as possible extension of the Yang-Mills symmetry. We obtain the corresponding gauge symmetry of the model and the most general lagrangian invariant by SU(N) × SU(N). The corresponding Feynman rules of the model are studied. Propagators and vertices are derived in the momentum space. As physical application, instead of considering the color symmetry SUc(3) for QCD, we substitute it by the combination SUc(3) × SUc(3). It yields a possibility to go beyond QCD symmetry in the sense that quarks are preserved with three colors. This extension provides composite quarks in triplets and sextets multiplets accomplished with the usual massless gluons plus massive gluons. We present a power counting analysis that satisfies the renormalization conditions as well as one studies the structure of radiative corrections to one loop approximation. Unitary condition is verified at tree level. Tachyons are avoided. For end, one extracts a BRST symmetry from lagrangian and Slavnov-Tayloridentities.


2020 ◽  
Vol 8 (5) ◽  
Author(s):  
Gabriel Cuomo ◽  
Luca Vecchi ◽  
Andrea Wulzer

The transition between the broken and unbroken phases of massive gauge theories, namely the rearrangement of longitudinal and Goldstone degrees of freedom that occurs at high energy, is not manifestly smooth in the standard formalism. The lack of smoothness concretely shows up as an anomalous growth with energy of the longitudinal polarization vectors, as they emerge in Feynman rules both for real on-shell external particles and for virtual particles from the decomposition of the gauge field propagator. This makes the characterization of Feynman amplitudes in the high-energy limit quite cumbersome, which in turn poses peculiar challenges in the study of Electroweak processes at energies much above the Electroweak scale. We develop a Lorentz-covariant formalism where polarization vectors are well-behaved and, consequently, energy power-counting is manifest at the level of individual Feynman diagrams. This allows us to prove the validity of the Effective $W$ Approximation and, more generally, the factorization of collinear emissions and to compute the corresponding splitting functions at the tree-level order. Our formalism applies at all orders in perturbation theory, for arbitrary gauge groups and generic linear gauge-fixing functionals. It can be used to simplify Standard Model loop calculations by performing the high-energy expansion directly on the Feynman diagrams. This is illustrated by computing the radiative corrections to the decay of the top quark.


2009 ◽  
Vol 25 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Jan H. D. Wolf ◽  
S. Robbert Gradstein ◽  
Nalini M. Nadkarni

Abstract:The sampling of epiphytes is fraught with methodological difficulties. We present a protocol to sample and analyse vascular epiphyte richness and abundance in forests of different structure (SVERA). Epiphyte abundance is estimated as biomass by recording the number of plant components in a range of size cohorts. Epiphyte species biomass is estimated on 35 sample-trees, evenly distributed over six trunk diameter-size cohorts (10 trees with dbh > 30 cm). Tree height, dbh and number of forks (diameter > 5 cm) yield a dimensionless estimate of the size of the tree. Epiphyte dry weight and species richness between forests is compared with ANCOVA that controls for tree size. SChao1 is used as an estimate of the total number of species at the sites. The relative dependence of the distribution of the epiphyte communities on environmental and spatial variables may be assessed using multivariate analysis and Mantel test. In a case study, we compared epiphyte vegetation of six Mexican oak forests and one Colombian oak forest at similar elevation. We found a strongly significant positive correlation between tree size and epiphyte richness or biomass at all sites. In forests with a higher diversity of host trees, more trees must be sampled. Epiphyte biomass at the Colombian site was lower than in any of the Mexican sites; without correction for tree size no significant differences in terms of epiphyte biomass could be detected. The occurrence of spatial dependence, at both the landscape level and at the tree level, shows that the inclusion of spatial descriptors in SVERA is justified.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Luis F. Alday ◽  
Xinan Zhou

Abstract We demonstrate the simplicity of AdS5× S5 IIB supergravity at one loop level, by studying non-planar holographic four-point correlators in Mellin space. We develop a systematic algorithm for constructing one-loop Mellin amplitudes from the tree-level data, and obtain a simple closed form answer for the $$ \left\langle {\mathcal{O}}_2^{SG}{\mathcal{O}}_2^{SG}{\mathcal{O}}_p^{SG}{\mathcal{O}}_p^{SG}\right\rangle $$ O 2 SG O 2 SG O p SG O p SG correlators. The structure of this expression is remarkably simple, containing only simultaneous poles in the Mellin variables. We also study the flat space limit of the Mellin amplitudes, which reproduces precisely the IIB supergravity one-loop amplitude in ten dimensions. Our results provide nontrivial evidence for the persistence of the hidden conformal symmetry at one loop.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 340
Author(s):  
Ilze Matisone ◽  
Roberts Matisons ◽  
Āris Jansons

The dieback of common ash (Fraxinus excelsior L.) has dramatically decreased the abundance of the species in Europe; however, tolerance of trees varies regionally. The tolerance of trees is considered to be a result of synergy of genetic and environmental factors, suggesting an uneven future potential of populations. This also implies that wide extrapolations would be biased and local information is needed. Survival of ash during 2005–2020, as well as stand- and tree-level variables affecting them was assessed based on four surveys of 15 permanent sampling plots from an eastern Baltic region (Latvia) using an additive model. Although at the beginning of dieback a relatively low mortality rate was observed, it increased during the 2015–2020 period, which was caused by dying of the most tolerant trees, though single trees have survived. In the studied stands, ash has been gradually replaced by other local tree species, though some recruitment of ash was locally observed, implying formation of mixed broadleaved stands with slight ash admixture. The survival of trees was related to tree height and position within a stand (relative height and local density), though the relationships were nonlinear, indicating presence of critical conditions. Regarding temporal changes, survival rapidly dropped during the first 16 years, stabilizing at a relatively low level. Although low recruitment of ash still implies plummeting economic importance of the species, the observed responses of survival, as well as the recruitment, imply potential to locally improve the survival of ash via management (tending), hopefully providing time for natural resistance to develop.


Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
C. Alina Cansler ◽  
Sharon M. Hood ◽  
Phillip J. van Mantgem ◽  
J. Morgan Varner

Abstract Background Predictive models of post-fire tree and stem mortality are vital for management planning and understanding fire effects. Post-fire tree and stem mortality have been traditionally modeled as a simple empirical function of tree defenses (e.g., bark thickness) and fire injury (e.g., crown scorch). We used the Fire and Tree Mortality database (FTM)—which includes observations of tree mortality in obligate seeders and stem mortality in basal resprouting species from across the USA—to evaluate the accuracy of post-fire mortality models used in the First Order Fire Effects Model (FOFEM) software system. The basic model in FOFEM, the Ryan and Amman (R-A) model, uses bark thickness and percentage of crown volume scorched to predict post-fire mortality and can be applied to any species for which bark thickness can be calculated (184 species-level coefficients are included in the program). FOFEM (v6.7) also includes 38 species-specific tree mortality models (26 for gymnosperms, 12 for angiosperms), with unique predictors and coefficients. We assessed accuracy of the R-A model for 44 tree species and accuracy of 24 species-specific models for 13 species, using data from 93 438 tree-level observations and 351 fires that occurred from 1981 to 2016. Results For each model, we calculated performance statistics and provided an assessment of the representativeness of the evaluation data. We identified probability thresholds for which the model performed best, and the best thresholds with either ≥80% sensitivity or specificity. Of the 68 models evaluated, 43 had Area Under the Receiver Operating Characteristic Curve (AUC) values ≥0.80, indicating excellent performance, and 14 had AUCs <0.7, indicating poor performance. The R-A model often over-predicted mortality for angiosperms; 5 of 11 angiosperms had AUCs <0.7. For conifers, R-A over-predicted mortality for thin-barked species and for small diameter trees. The species-specific models had significantly higher AUCs than the R-A models for 10 of the 22 models, and five additional species-specific models had more balanced errors than R-A models, even though their AUCs were not significantly different or were significantly lower. Conclusions Approximately 75% of models tested had acceptable, excellent, or outstanding predictive ability. The models that performed poorly were primarily models predicting stem mortality of angiosperms or tree mortality of thin-barked conifers. This suggests that different approaches—such as different model forms, better estimates of bark thickness, and additional predictors—may be warranted for these taxa. Future data collection and research should target the geographical and taxonomic data gaps and poorly performing models identified in this study. Our evaluation of post-fire tree mortality models is the most comprehensive effort to date and allows users to have a clear understanding of the expected accuracy in predicting tree death from fire for 44 species.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Dean Carmi

Abstract We continue the study of AdS loop amplitudes in the spectral representation and in position space. We compute the finite coupling 4-point function in position space for the large-N conformal Gross Neveu model on AdS3. The resummation of loop bubble diagrams gives a result proportional to a tree-level contact diagram. We show that certain families of fermionic Witten diagrams can be easily computed from their companion scalar diagrams. Thus, many of the results and identities of [1] are extended to the case of external fermions. We derive a spectral representation for ladder diagrams in AdS. Finally, we compute various bulk 2-point correlators, extending the results of [1].


Sign in / Sign up

Export Citation Format

Share Document