scholarly journals Biological response of chemically treated surface of the ultrafine-grained Ti–6Al–7Nb alloy for biomedical applications

2019 ◽  
Vol Volume 14 ◽  
pp. 1725-1736 ◽  
Author(s):  
Diego Pedreira de Oliveira ◽  
Tatiane Venturott Toniato ◽  
Ritchelli Ricci ◽  
Fernanda Roberta Marciano ◽  
Egor Prokofiev ◽  
...  
Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1121 ◽  
Author(s):  
Metka Benčina ◽  
Aleš Iglič ◽  
Miran Mozetič ◽  
Ita Junkar

Crystallization alters the characteristics of TiO2 nanosurfaces, which consequently influences their bio-performance. In various biomedical applications, the anatase or rutile crystal phase is preferred over amorphous TiO2. The most common crystallization technique is annealing in a conventional furnace. Methods such as hydrothermal or room temperature crystallization, as well as plasma electrolytic oxidation (PEO) and other plasma-induced crystallization techniques, present more feasible and rapid alternatives for crystal phase initiation or transition between anatase and rutile phases. With oxygen plasma treatment, it is possible to achieve an anatase or rutile crystal phase in a few seconds, depending on the plasma conditions. This review article aims to address different crystallization techniques on nanostructured TiO2 surfaces and the influence of crystal phase on biological response. The emphasis is given to electrochemically anodized nanotube arrays and their interaction with the biological environment. A short overview of the most commonly employed medical devices made of titanium and its alloys is presented and discussed.


2021 ◽  
Author(s):  
CHEN XIE ◽  
Peiyuan Kang ◽  
Johan Cazals ◽  
Omar Morales Castelan ◽  
Jaona Randrianalisoa ◽  
...  

With the ability to convert external excitation into heat, nanomaterials play an essential role in many biomedical applications. Two modes of nanoparticle (NP) array heating, nanoscale-confined heating (NCH) and macroscale-collective heating (MCH), have been found and extensively studied. Despite this, the resulting biological response at protein level remains elusive. In this study, we developed a computational model to systematically investigate the single-pulsed heating of NP array and corresponding protein denaturation/activation. We found that NCH may lead to targeted protein denaturation, however, nanoparticle heating does not lead to nanoscale selective TRPV1 channel activation. The excitation duration and NP concentration are primary factors that determine a window for targeted protein denaturation, and together with heating power, we defined quantified boundaries for targeted protein denaturation. Our results boost our understandings in the NCH and MCH under realistic physical constraints and provide a robust guidance to customize biomedical platforms with desired NP heating.


2013 ◽  
Vol 39 (2) ◽  
pp. 1683-1694 ◽  
Author(s):  
Muthusamy Prabhu ◽  
Kandiah Kavitha ◽  
Palanisamy Manivasakan ◽  
Venkatachalam Rajendran ◽  
Palanisami Kulandaivelu

2015 ◽  
Vol 18 (6) ◽  
pp. 1163-1175 ◽  
Author(s):  
Daniel Jogaib Fernandes ◽  
Carlos Nelson Elias ◽  
Ruslan Zufarovich Valiev

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Huan Cao ◽  
Lixia Duan ◽  
Yan Zhang ◽  
Jun Cao ◽  
Kun Zhang

AbstractHydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell–hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.


2013 ◽  
Vol 2 (4) ◽  
pp. 340-350 ◽  
Author(s):  
Carlos Nelson Elias ◽  
Marc André Meyers ◽  
Ruslan Z. Valiev ◽  
Sérgio Neves Monteiro

Author(s):  
T. L. Hayes

Biomedical applications of the scanning electron microscope (SEM) have increased in number quite rapidly over the last several years. Studies have been made of cells, whole mount tissue, sectioned tissue, particles, human chromosomes, microorganisms, dental enamel and skeletal material. Many of the advantages of using this instrument for such investigations come from its ability to produce images that are high in information content. Information about the chemical make-up of the specimen, its electrical properties and its three dimensional architecture all may be represented in such images. Since the biological system is distinctive in its chemistry and often spatially scaled to the resolving power of the SEM, these images are particularly useful in biomedical research.In any form of microscopy there are two parameters that together determine the usefulness of the image. One parameter is the size of the volume being studied or resolving power of the instrument and the other is the amount of information about this volume that is displayed in the image. Both parameters are important in describing the performance of a microscope. The light microscope image, for example, is rich in information content (chemical, spatial, living specimen, etc.) but is very limited in resolving power.


Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


Sign in / Sign up

Export Citation Format

Share Document