scholarly journals Single Pulse Heating of Nanoparticle Array for Biological Applications

2021 ◽  
Author(s):  
CHEN XIE ◽  
Peiyuan Kang ◽  
Johan Cazals ◽  
Omar Morales Castelan ◽  
Jaona Randrianalisoa ◽  
...  

With the ability to convert external excitation into heat, nanomaterials play an essential role in many biomedical applications. Two modes of nanoparticle (NP) array heating, nanoscale-confined heating (NCH) and macroscale-collective heating (MCH), have been found and extensively studied. Despite this, the resulting biological response at protein level remains elusive. In this study, we developed a computational model to systematically investigate the single-pulsed heating of NP array and corresponding protein denaturation/activation. We found that NCH may lead to targeted protein denaturation, however, nanoparticle heating does not lead to nanoscale selective TRPV1 channel activation. The excitation duration and NP concentration are primary factors that determine a window for targeted protein denaturation, and together with heating power, we defined quantified boundaries for targeted protein denaturation. Our results boost our understandings in the NCH and MCH under realistic physical constraints and provide a robust guidance to customize biomedical platforms with desired NP heating.

Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


RSC Advances ◽  
2016 ◽  
Vol 6 (81) ◽  
pp. 77818-77829 ◽  
Author(s):  
Rana Imani ◽  
Wei Shao ◽  
Shahriar Hojjati Emami ◽  
Shahab Faghihi ◽  
Satya Prakash

The poor dispersibility of graphene-based nano-materials in aqueous media is a crucial limitation in their biological applications.


2021 ◽  
Vol 9 ◽  
Author(s):  
Udisha Singh ◽  
Vinod Morya ◽  
Bhaskar Datta ◽  
Chinmay Ghoroi ◽  
Dhiraj Bhatia

Of the multiple areas of applications of DNA nanotechnology, stimuli-responsive nanodevices have emerged as an elite branch of research owing to the advantages of molecular programmability of DNA structures and stimuli-responsiveness of motifs and DNA itself. These classes of devices present multiples areas to explore for basic and applied science using dynamic DNA nanotechnology. Herein, we take the stake in the recent progress of this fast-growing sub-area of DNA nanotechnology. We discuss different stimuli, motifs, scaffolds, and mechanisms of stimuli-responsive behaviours of DNA nanodevices with appropriate examples. Similarly, we present a multitude of biological applications that have been explored using DNA nanodevices, such as biosensing, in vivo pH-mapping, drug delivery, and therapy. We conclude by discussing the challenges and opportunities as well as future prospects of this emerging research area within DNA nanotechnology.


2021 ◽  
Vol 10 (2) ◽  
pp. 114-118
Author(s):  
Huyen Nguyen Thi ◽  
Tam Lai Thi Thanh ◽  
Yudy Paola Monreno Gonzalez ◽  
Thinh Nguyen Ngoc ◽  
Mai Nguyen Thi Tuyet ◽  
...  

This paper presents a facile synthesis of nano-silica by hydrothermal treatment assisted by cetyltrimethylammonium bromide (CTAB). The effect of CTAB on the morphology of the material was also investigated. Structure, morphology, and composition of the material were studied byvarious methods such as XRD, SEM, FT-IR, and EDX.The results showed that a sample of nanosilica with amount of 1,0 g CTAB at pH 10-11 reached the most appropriate size, with the average length and width are 231,34±48,98 nm và 113,05±16,45 nm, respectively. In addition, the results indicated that the nanoparticles are completely pure, with many silanol groups on the surface, suitable for applications in bone tissue engineering and other biological applications.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1121 ◽  
Author(s):  
Metka Benčina ◽  
Aleš Iglič ◽  
Miran Mozetič ◽  
Ita Junkar

Crystallization alters the characteristics of TiO2 nanosurfaces, which consequently influences their bio-performance. In various biomedical applications, the anatase or rutile crystal phase is preferred over amorphous TiO2. The most common crystallization technique is annealing in a conventional furnace. Methods such as hydrothermal or room temperature crystallization, as well as plasma electrolytic oxidation (PEO) and other plasma-induced crystallization techniques, present more feasible and rapid alternatives for crystal phase initiation or transition between anatase and rutile phases. With oxygen plasma treatment, it is possible to achieve an anatase or rutile crystal phase in a few seconds, depending on the plasma conditions. This review article aims to address different crystallization techniques on nanostructured TiO2 surfaces and the influence of crystal phase on biological response. The emphasis is given to electrochemically anodized nanotube arrays and their interaction with the biological environment. A short overview of the most commonly employed medical devices made of titanium and its alloys is presented and discussed.


2020 ◽  
Vol 8 (36) ◽  
pp. 8219-8231
Author(s):  
Wumaier Yasen ◽  
Ruijiao Dong ◽  
Aliya Aini ◽  
Xinyuan Zhu

Supramolecular block copolymers with a dynamically reversible nature and hierarchical microphase-separated structures can greatly enrich the library of pharmaceutical carriers and outline future research directions for biological applications.


2019 ◽  
Vol Volume 14 ◽  
pp. 1725-1736 ◽  
Author(s):  
Diego Pedreira de Oliveira ◽  
Tatiane Venturott Toniato ◽  
Ritchelli Ricci ◽  
Fernanda Roberta Marciano ◽  
Egor Prokofiev ◽  
...  

2021 ◽  
Vol 10 (4) ◽  
pp. 2742-2749

Polypyrrole conducting polymers have become significant in different biomedical applications, but unfortunately, they are insoluble with poor mechanical properties. A natural soluble polymer (Chitosan) can be used to improve such properties. Chitosan/polypyrrole composites were synthesized by dispersing the different doped amounts of polypyrrole into the chitosan matrix. The physical properties of the synthesized composite films were investigated using different techniques. The results obtained from FTIR, XRD show the electrostatic interaction between chitosan and polypyrrole. UV/Vis analysis implies that the optical band gap of composite films decreases with increasing polypyrrole concentration, which can be assumed to increase the electrical conduction in the composite films.


2017 ◽  
Vol 8 (2) ◽  
pp. 160-167
Author(s):  
O. G. Reutskaya ◽  
Y. M. Pleskachevsky

The most promising for mass use in gas analysis equipment are semiconductor gas sensors due to their high reliability, easy operation and relatively low cost. Power consumption in the single-sensor mode, constant heating is from 250 to 600 W average and in pulsed mode heating – ≤ 20 W. The aim of this work was to study the effectiveness of the pulsed heating for multisensor microsystems consisting of two sensors on the substrate of the nanostructured aluminum oxide, compared with the mode of constant heating.For sensitive layers were chosen compositions: SnO2+Pt+Pd at the first sensor of the microsystem and In2O3+Al2O3+Pt on the second. Measuring the sensor response in the pulse heating mode was carried out as follows. Power on each sensor microsystem was installed 1.3 mW. Then the short-term heating (theat.. = 5 s) was performed at the power 61 mW. The detected gases CO and NO2 with the concentration 200 ppm and 4 ppm, correspondingly, were submitted to the microsystem after 15 minutes. The resistance values for each of the sensor were fixed. According to the results determine the sensitivity (sensor response) the maximum value is after 60 s for the sensor with a sensing layer SnO2+Pt+Pd when exposed to CO was 670 %, and for the sensor with In2O3+Al2O3+Pt – 380 %.Advantages of using pulsed heating from the point of view of a power consumption multisensor microsystem mW-range and high performance sensors on substrates of nanostructured alumina were established.


Sign in / Sign up

Export Citation Format

Share Document