scholarly journals An Expert Panel Statement on the Beneficial Effects of Human Milk Oligosaccharides (HMOs) in Early Life and Potential Utility of HMO-Supplemented Infant Formula in Cow’s Milk Protein Allergy

2021 ◽  
Vol Volume 14 ◽  
pp. 1147-1164
Author(s):  
Bulent Enis Sekerel ◽  
Gulbin Bingol ◽  
Fugen Cullu Cokugras ◽  
Haluk Cokugras ◽  
Aydan Kansu ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ioannis Kostopoulos ◽  
Janneke Elzinga ◽  
Noora Ottman ◽  
Jay T. Klievink ◽  
Bernadet Blijenberg ◽  
...  

2012 ◽  
Vol 108 (10) ◽  
pp. 1839-1846 ◽  
Author(s):  
Evelyn Jantscher-Krenn ◽  
Tineke Lauwaet ◽  
Laura A. Bliss ◽  
Sharon L. Reed ◽  
Frances D. Gillin ◽  
...  

Human milk oligosaccharides (HMO), complex sugars that are highly abundant in breast milk, block viral and bacterial attachment to the infant's intestinal epithelium and lower the risk of infections. We hypothesised that HMO also prevent infections with the protozoan parasiteEntamoeba histolytica,as its major virulence factor is a lectin that facilitates parasite attachment and cytotoxicity and binds galactose (Gal) andN-acetyl-galactosamine. HMO contain Gal, are only minimally digested in the small intestine and reach the colon, the site ofE. histolyticainfection. The objective of the present study was to investigate whether HMO reduceE. histolyticaattachment and cytotoxicity. Ourin vitroresults show that physiological concentrations of isolated, pooled HMO detachE. histolyticaby more than 80 %. In addition, HMO rescueE. histolytica-induced destruction of human intestinal epithelial HT-29 cells in a dose-dependent manner. The cytoprotective effects were structure-specific. Lacto-N-tetraose with its terminal Gal rescued up to 80 % of the HT-29 cells, while HMO with fucose α1–2-linked to the terminal Gal had no effect. Galacto-oligosaccharides (GOS), which also contain terminal Gal and are currently added to infant formula to mimic some of the beneficial effects of HMO, completely abolishedE. histolyticaattachment and cytotoxicity at 8 mg/ml. Although our results need to be confirmedin vivo, they may provide one explanation for why breast-fed infants are at lower risk ofE. histolyticainfections. HMO and GOS are heat tolerant, stable, safe and in the case of GOS, inexpensive, which could make them valuable candidates as alternative preventive and therapeutic anti-amoebic agents.


2017 ◽  
Vol 64 (4) ◽  
pp. 624-631 ◽  
Author(s):  
Giuseppe Puccio ◽  
Philippe Alliet ◽  
Cinzia Cajozzo ◽  
Elke Janssens ◽  
Giovanni Corsello ◽  
...  

2019 ◽  
Vol 14 (2) ◽  
pp. 635-648 ◽  
Author(s):  
Melissa A. E. Lawson ◽  
Ian J. O’Neill ◽  
Magdalena Kujawska ◽  
Sree Gowrinadh Javvadi ◽  
Anisha Wijeyesekera ◽  
...  

AbstractDiet-microbe interactions play an important role in modulating the early-life microbiota, with Bifidobacterium strains and species dominating the gut of breast-fed infants. Here, we sought to explore how infant diet drives distinct bifidobacterial community composition and dynamics within individual infant ecosystems. Genomic characterisation of 19 strains isolated from breast-fed infants revealed a diverse genomic architecture enriched in carbohydrate metabolism genes, which was distinct to each strain, but collectively formed a pangenome across infants. Presence of gene clusters implicated in digestion of human milk oligosaccharides (HMOs) varied between species, with growth studies indicating that within single infants there were differences in the ability to utilise 2′FL and LNnT HMOs between strains. Cross-feeding experiments were performed with HMO degraders and non-HMO users (using spent or ‘conditioned’ media and direct co-culture). Further 1H-NMR analysis identified fucose, galactose, acetate, and N-acetylglucosamine as key by-products of HMO metabolism; as demonstrated by modest growth of non-HMO users on spend media from HMO metabolism. These experiments indicate how HMO metabolism permits the sharing of resources to maximise nutrient consumption from the diet and highlights the cooperative nature of bifidobacterial strains and their role as ‘foundation’ species in the infant ecosystem. The intra- and inter-infant bifidobacterial community behaviour may contribute to the diversity and dominance of Bifidobacterium in early life and suggests avenues for future development of new diet and microbiota-based therapies to promote infant health.


2020 ◽  
Author(s):  
Michael Jakob Pichler ◽  
Chihaya Yamada ◽  
Bashar Shuoker ◽  
Maria Camila Alvarez-Silva ◽  
Aina Gotoh ◽  
...  

AbstractThe early life human gut microbiota exerts life-long health effects on the host, but the mechanisms underpinning its assembly remain elusive. Particularly, the early colonization of Clostridiales from the Roseburia-Eubacterium group, associated with protection from colorectal cancer, immune- and metabolic disorders is enigmatic. Here we unveil the growth of Roseburia and Eubacterium members on human milk oligosaccharides (HMOs) using an unprecedented catabolic apparatus. The described HMO pathways and additional glycan utilization loci confer co-growth with Akkermansia muciniphilia via cross-feeding and access to mucin O-glycans. Strikingly, both, HMO and xylooligosaccharide pathways, were active simultaneously attesting an adaptation to a mixed HMO-solid food diet. Analyses of 4599 Roseburia genomes underscored the preponderance of HMO pathways and highlighted different HMO utilization phylotypes. Our revelations provide a possible rationale for the early establishment and resilience of butyrate producing Clostridiales and expand the role of specific HMOs in the assembly of the early life microbiota.


Author(s):  
Wusun Li ◽  
Jingxuan Wang ◽  
Yingying Lin ◽  
Yixuan Li ◽  
Fazheng Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document