scholarly journals Butyrate producing Clostridiales utilize distinct human milk oligosaccharides correlating to early colonization and prevalence in the human gut

2020 ◽  
Author(s):  
Michael Jakob Pichler ◽  
Chihaya Yamada ◽  
Bashar Shuoker ◽  
Maria Camila Alvarez-Silva ◽  
Aina Gotoh ◽  
...  

AbstractThe early life human gut microbiota exerts life-long health effects on the host, but the mechanisms underpinning its assembly remain elusive. Particularly, the early colonization of Clostridiales from the Roseburia-Eubacterium group, associated with protection from colorectal cancer, immune- and metabolic disorders is enigmatic. Here we unveil the growth of Roseburia and Eubacterium members on human milk oligosaccharides (HMOs) using an unprecedented catabolic apparatus. The described HMO pathways and additional glycan utilization loci confer co-growth with Akkermansia muciniphilia via cross-feeding and access to mucin O-glycans. Strikingly, both, HMO and xylooligosaccharide pathways, were active simultaneously attesting an adaptation to a mixed HMO-solid food diet. Analyses of 4599 Roseburia genomes underscored the preponderance of HMO pathways and highlighted different HMO utilization phylotypes. Our revelations provide a possible rationale for the early establishment and resilience of butyrate producing Clostridiales and expand the role of specific HMOs in the assembly of the early life microbiota.

2020 ◽  
pp. 1-16
Author(s):  
L.W. Chia ◽  
M. Mank ◽  
B. Blijenberg ◽  
R.S. Bongers ◽  
K. van Limpt ◽  
...  

The establishment of the gut microbiota immediately after birth is a dynamic process that may impact lifelong health. At this important developmental stage in early life, human milk oligosaccharides (HMOs) serve as specific substrates to shape the gut microbiota of the nursling. The well-orchestrated transition is important as an aberrant microbial composition and bacterial-derived metabolites are associated with colicky symptoms and atopic diseases in infants. Here, we study the trophic interactions between an HMO-degrader, Bifidobacterium infantis and the butyrogenic Anaerostipes caccae using carbohydrate substrates that are relevant in the early life period including lactose and total human milk carbohydrates. Mono- and co-cultures of these bacterial species were grown at pH 6.5 in anaerobic bioreactors supplemented with lactose or total human milk carbohydrates. A. caccae was not able to grow on these substrates except when grown in co-culture with B. infantis, leading to growth and concomitant butyrate production. Two levels of cross-feeding were observed, in which A. caccae utilised the liberated monosaccharides as well as lactate and acetate produced by B. infantis. This microbial cross-feeding points towards the key ecological role of bifidobacteria in providing substrates for other important species that will colonise the infant gut. The progressive shift of the gut microbiota composition that contributes to the gradual production of butyrate could be important for host-microbial crosstalk and gut maturation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ioannis Kostopoulos ◽  
Janneke Elzinga ◽  
Noora Ottman ◽  
Jay T. Klievink ◽  
Bernadet Blijenberg ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3052
Author(s):  
Lila S. Nolan ◽  
Jamie M. Rimer ◽  
Misty Good

Preterm infants are a vulnerable population at risk of intestinal dysbiosis. The newborn microbiome is dominated by Bifidobacterium species, though abnormal microbial colonization can occur by exogenous factors such as mode of delivery, formula feeding, and exposure to antibiotics. Therefore, preterm infants are predisposed to sepsis and necrotizing enterocolitis (NEC), a fatal gastrointestinal disorder, due to an impaired intestinal barrier, immature immunity, and a dysbiotic gut microbiome. Properties of human milk serve as protection in the prevention of NEC. Human milk oligosaccharides (HMOs) and the microbiome of breast milk are immunomodulatory components that provide intestinal homeostasis through regulation of the microbiome and protection of the intestinal barrier. Enteral probiotic supplements have been trialed to evaluate their impact on establishing intestinal homeostasis. Here, we review the protective role of HMOs, probiotics, and synbiotic combinations in protecting a vulnerable population from the pathogenic features associated with necrotizing enterocolitis.


2019 ◽  
Vol 22 (4) ◽  
pp. 330 ◽  
Author(s):  
Badriul Hegar ◽  
Yulianti Wibowo ◽  
Ray Wagiu Basrowi ◽  
Reza Gunadi Ranuh ◽  
Subianto Marto Sudarmo ◽  
...  

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Riccardo G LoCascio ◽  
Gabriel Paulino ◽  
Samara L Freeman ◽  
Carlito B Lebrilla ◽  
J. Bruce German ◽  
...  

2019 ◽  
Vol 14 (2) ◽  
pp. 635-648 ◽  
Author(s):  
Melissa A. E. Lawson ◽  
Ian J. O’Neill ◽  
Magdalena Kujawska ◽  
Sree Gowrinadh Javvadi ◽  
Anisha Wijeyesekera ◽  
...  

AbstractDiet-microbe interactions play an important role in modulating the early-life microbiota, with Bifidobacterium strains and species dominating the gut of breast-fed infants. Here, we sought to explore how infant diet drives distinct bifidobacterial community composition and dynamics within individual infant ecosystems. Genomic characterisation of 19 strains isolated from breast-fed infants revealed a diverse genomic architecture enriched in carbohydrate metabolism genes, which was distinct to each strain, but collectively formed a pangenome across infants. Presence of gene clusters implicated in digestion of human milk oligosaccharides (HMOs) varied between species, with growth studies indicating that within single infants there were differences in the ability to utilise 2′FL and LNnT HMOs between strains. Cross-feeding experiments were performed with HMO degraders and non-HMO users (using spent or ‘conditioned’ media and direct co-culture). Further 1H-NMR analysis identified fucose, galactose, acetate, and N-acetylglucosamine as key by-products of HMO metabolism; as demonstrated by modest growth of non-HMO users on spend media from HMO metabolism. These experiments indicate how HMO metabolism permits the sharing of resources to maximise nutrient consumption from the diet and highlights the cooperative nature of bifidobacterial strains and their role as ‘foundation’ species in the infant ecosystem. The intra- and inter-infant bifidobacterial community behaviour may contribute to the diversity and dominance of Bifidobacterium in early life and suggests avenues for future development of new diet and microbiota-based therapies to promote infant health.


2016 ◽  
Vol 5 (8) ◽  
pp. e99 ◽  
Author(s):  
Nicholas J Andreas ◽  
Asmaa Al-Khalidi ◽  
Mustapha Jaiteh ◽  
Edward Clarke ◽  
Matthew J Hyde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document