scholarly journals MONTHLY/SEASONAL STATISTICAL STUDY ON THE CONVERGENCE OF FOE AT THE OUAGADOUGOU STATION DURING THE SOLAR CYCLE 22

2021 ◽  
Vol 9 (08) ◽  
pp. 966-972
Author(s):  
Sawadogo Gedeon ◽  
◽  
Nanema Emmanuel ◽  
Nakolemda Roger ◽  
◽  
...  

In this paper we studied the variability of the peak of the critical frequency of the ionospheric E layer (foE) during the minimum and maximum phase of solar cycle 22 (SC22) at Ouagadougou station whose geographical coordinates are: 12.4°N and 358.5°E. We made a statistical study with the aim of highlighting the month which would have the value of foE which best converges towards the average of its corresponding season. We prove that the median months of each season have their critical frequencies (foE) that best converge to the average foE values of each season. Thus, for the winter, spring, summer and autumn seasons, the months best suited for a seasonal study of foE are January, April, July and October respectively at solar minimum and maximum. This study also revealed that foE varies according to the time of day, the season and the phase of the solar cycle at Ouagadougou station.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Karim Guibula ◽  
Jean Louis Zerbo ◽  
M’Bi Kaboré ◽  
Frédéric Ouattara

In this paper we report the foF2 data measured at Korhogo station (Lat. 9.3° N; Long. 354.6° E; dip. 0.6° S) compared to predictions with IRI-2012 subroutine URSI and CCIR for different solar cycle phases (minimum, ascending, maximum, descending) and different geomagnetic activity classes (quiet, fluctuating, recurrent, shock). According to our investigations, predictions with IRI are in agreement with the measured data during daytime and show significant differences between them at night-time and especially before sunrise. Except at solar minimum, the gap between predictions and measured data are more appreciable during recurrent and shock conditions compared to quiet and fluctuating conditions. Our results also show that only URSI model expresses the signature of EXB drift phenomenon at solar maximum phase during the recurrent days and at ascending phase for fluctuating activity.


1990 ◽  
Vol 142 ◽  
pp. 261-261
Author(s):  
Jagdev Singh

The sun as a star has been studied by many observers by monitoring the calcium K line profile. Skumanich et al (1984) proposed a three component model of the solar cycle variability of calcium K emission using extant contrast and fractional area parameters for (1) cell (2) network and (3) plage components. The computed line profile agreed well with the observed one at the solar minimum by taking the contribution of only cell and network features and using extant limb-darkening laws. The occurrence of plages during the growth of the solar cycle was found to be insufficient to account for the increase in K emission and therefore, they introduced an additional network component, ‘Active network’ in excess of the quiet sun value to explain the observed excess emission during the maximum phase.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Sibri Alphonse Sandwidi ◽  
Doua Allain Gnabahou ◽  
Frédéric Ouattara

This paper aims to study the foF2 seasonal asymmetry diurnal variation at Dakar station from 1976 to 1995. We show that equinoctial asymmetry is less pronounced and somewhere is absent throughout 21 and 22 solar cycles. The absence of equinoctial asymmetry may be due to Russell-McPherron mechanism and the vertical drift E × B . The solstice anomaly or annual anomaly is always observed throughout both 21 and 22 solar cycles as measured at Dakar ionosonde. The maximum negative value of σfoF2, fairly equal to -65%, is observed during the decreasing phase at solstice time; this value appeared usually at 0200 LT except during the maximum phase during which it is observed at 2300 LT. The maximum positive value, fairly equal to +94%, is observed at 0600 LT during solar minimum at solstice time. This annual asymmetry may be due to neutral composition asymmetric variation and solar radiation annual asymmetry with the solstice time. The semiannual asymmetry is also observed during all solar cycle phases. The maximum positive value (+73%) is observed at 2300 LT during solar maximum, and its maximum negative (-12%) is observed during the increasing phase. We established, as the case of annual asymmetry, that this asymmetry could not be explained by the asymmetry in vertical velocity E × B phenomenon but by the axial mechanism, the “thermospheric spoon” mechanism, and the seasonally varying eddy mixing phenomenon.


2015 ◽  
Vol 33 (1) ◽  
pp. 31-37 ◽  
Author(s):  
P. B. Kotzé

Abstract. Geomagnetic activity levels during the declining phase and solar minimum period of the solar cycle are considerably different from those during the solar maximum phase. Previous studies revealed variations in the pattern of recurrent activity from cycle to cycle as well as variations in the average geomagnetic activity levels during a solar cycle. During the declining phase of a solar cycle (and solar minimum), the solar and interplanetary causes of geomagnetic activity are substantially different from those during the solar maximum phase. Co-rotating fast solar wind streams originating from large polar coronal holes, extending towards the Sun's equator, interact with the Earth's magnetosphere, resulting in recurrent geomagnetic activity particularly during solar cycle minimum periods. This is a well-known phenomenon with respect to 27.0- and 13.5-day recurrence geomagnetic activity, and it is well-known to be related to sectorial (non-axial) poloidal magnetic field structure in the Sun. Published results of the recent solar-cycle-23 minimum showed that the presence of 9.0- and 6.7-day recurrent geomagnetic activities can be attributed to the sectorial spherical harmonic structure present in the solar magnetic field. In this study we performed a wavelet and Lomb–Scargle analysis of the geomagnetic activity K index at Lerwick (LER), Hermanus (HER) and Canberra (CNB) for the period between 1960 and 2010, overlapping with solar cycles 20 to 23. Daily mean K indices are used to identify how several harmonics of the 27.0-day recurrent period change during each solar cycle when comparing high and mid-latitude geomagnetic activity, applying a 95% confidence level. In particular the behaviour of the second (13.5-day), third (9.0-day) and fourth (6.7-day) harmonics are investigated by doing a wavelet analysis of each individual year's K indices at each location. Results obtained show that particularly during solar minima the 27.0-day period is no longer detectable above the 95% confidence level, and that geomagnetic activity is in fact dominated by higher harmonics like 13.5-, 9.0- and 6.7-day periods. These findings in fact are in line with previous investigations and confirm the results obtained by researchers using other geomagnetic activity indices like \\textit{aa} and C9. The wavelet-spectrum analysis also reveals that during the downward phase of cycle 23 and the very long minimum of 23–24 between 2002 and 2008, the 27.0-day activity period drops below the 95% confidence level. This is confirmed by Lomb–Scargle analyses of every year's K index activity. Results obtained in this study support evidence by other investigations that this can be attributed to the lack of coronal-mass ejection (CME)-dominated solar activity during solar minima, periods characterized by strong solar dipolar magnetic fields, less sunspot numbers than at solar maxima, and multiple prominent co-rotating solar wind streams present. This analysis further confirms previous studies by other authors that the pattern of recurrent activity is dictated by the configuration of coronal holes which give rise to related high-speed streams during a solar cycle by analysing K indices at both high- and mid-latitude magnetic observatories.


2019 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Abdoul-kader SEGDA ◽  
Doua Allain GNABAHOU ◽  
Frédéric OUATTARA

The present work concerns foF2 time variation at Ouagadougou station for three solar cycles (from cycle 20 to cycle 22). We not only investigate solar cycle phase dependence under shock activity that is divided into one-shock-activity, two-shock-activity and three-shock-activity but also compare the IRI 2012 model values with the data carried out at Ouagadougou station. This study reveals that there is no one-day-shock during solar minimum phase. For the other solar cycle phases IRI 2012 reproduces the ionosphere electrodynamics at daytime except during the increasing phase. During night time the model is not suitable. The best subroutine under one-day-shock activity is URSI for increasing and decreasing phases. During the maximum phase it is CCIR. For two-days-shock activity IRI 2012 reproduces the ionosphere electrodynamics during the minimum and the increasing phases. The best subroutine is CCIR during the minimum phase and URSI for the other solar cycle phases. For three-days-shock activity IRI 2012 is not suitable. The best model is URSI for all solar cycle phases.


2021 ◽  
pp. 3759-3771
Author(s):  
Ja'far M. Ja’far ◽  
Khalid A. Hadi

        In this research, an investigation for the compatibility of the IRI-2016 and ASAPS international models was conducted to evaluate their accuracy in predicting the ionospheric critical frequency parameter (foF2) for the years 2009 and 2014 that represent the minimum and maximum years of solar cycle 24. The calculations of the monthly average foF2 values were performed for three different selected stations distributed over the mid-latitude region. These stations are Athens - Greece (23.7o E, 37.9 o N), El Arenosillo - Spain (-6.78 o E, 37.09 o N), and Je Ju - South Korea (124.53 o E, 33.6 o N). The calculated values using the two tested models were compared with the observed foF2 datasets for each of the three selected locations. The results showed that the two tested models gave good and close results for all selected stations compared to the observed data for the studied period of time. At the minimum solar cycle 24, the ASAPS model showed in general better values than the IRI-2016 model at Athens, El Arenosillo and Je Ju stations for all tested methods. At maximum solar cycle 24, the IRI-2016 model showed higher and closer values to the observed data at Athens and El Arenosillo stations, while the ASAPS model showed better values at Je Ju station.


2011 ◽  
Vol 7 (S286) ◽  
pp. 200-209 ◽  
Author(s):  
E. Echer ◽  
B. T. Tsurutani ◽  
W. D. Gonzalez

AbstractThe recent solar minimum (2008-2009) was extreme in several aspects: the sunspot number, Rz, interplanetary magnetic field (IMF) magnitude Bo and solar wind speed Vsw were the lowest during the space era. Furthermore, the variance of the IMF southward Bz component was low. As a consequence of these exceedingly low solar wind parameters, there was a minimum in the energy transfer from solar wind to the magnetosphere, and the geomagnetic activity ap index reached extremely low levels. The minimum in geomagnetic activity was delayed in relation to sunspot cycle minimum. We compare the solar wind and geomagnetic activity observed in this recent minimum with previous solar cycle values during the space era (1964-2010). Moreover, the geomagnetic activity conditions during the current minimum are compared with long term variability during the period of available geomagnetic observations. The extremely low geomagnetic activity observed in this solar minimum was previously recorded only at the end of XIX century and at the beginning of the XX century, and this might be related to the Gleissberg (80-100 years) solar cycle.


2021 ◽  
Vol 19 (8) ◽  
pp. 157-168
Author(s):  
Wafaa H.A. Zaki

The ionosphere layer (F2) is known as the most important layer for High frequency (Hf) radio communication because it is a permanent layer and excited during the day and night so it is able to reflect the frequencies at night and day due to its high critical frequency, and this layer is affected by daily and monthly solar activity. In this study the characteristics and behavior of F2 layer during Solar cycle 24 were studied, the effect of Sunspots number (Ri) on the critical frequency (foF2), were investigated for the years (2015, 2016, 2017, 2018, 2019, 2020) which represents the down phase of the solar cycle 24 over Erbil station (36° N, 44° E) by finding the critical frequency (foF2) values, the layer’ s impression times are determined for the days of solstice as well as equinox, where the solar activity was examined for the days of the winter and summer solstice and the days of the spring and autumn equinoxes for a period of 24 hours by applied the International Reference Ionosphere model IRI (2016). The output data for foF2 were verified by using the IRI-Ne- Quick option by specifying the time, date and Sunspot number parameters. Statistical analysis was caried out through the application of the Minitab (version 2018) in order to find the correlation between the critical frequency (foF2) of Ionospheric layer F2 and Sunspot number. It was concluded that the correlation is strong and positive, this indicate that critical frequency (foF2) increase with increasing Sunspots number (Ri) for solar cycle 24.


2007 ◽  
Vol 25 (5) ◽  
pp. 1183-1197 ◽  
Author(s):  
M. L. Parkinson ◽  
R. C. Healey ◽  
P. L. Dyson

Abstract. Multi-scale structure of the solar wind in the ecliptic at 1 AU undergoes significant evolution with the phase of the solar cycle. Wind spacecraft measurements during 1995 to 1998 and ACE spacecraft measurements during 1997 to 2005 were used to characterise the evolution of small-scale (~1 min to 2 h) fluctuations in the solar wind speed vsw, magnetic energy density B2, and solar wind ε parameter, in the context of large-scale (~1 day to years) variations. The large-scale variation in ε most resembled large-scale variations in B2. The probability density of large fluctuations in ε and B2 both had strong minima during 1995, a familiar signature of solar minimum. Generalized Structure Function (GSF) analysis was used to estimate inertial range scaling exponents aGSF and their evolution throughout 1995 to 2005. For the entire data set, the weighted average scaling exponent for small-scale fluctuations in vsw was aGSF=0.284±0.001, a value characteristic of intermittent MHD turbulence (>1/4), whereas the scaling exponents for corresponding fluctuations in B2 and ε were aGSF=0.395±0.001 and 0.334±0.001, respectively. These values are between the range expected for Gaussian fluctuations (1/2) and Kolmogorov turbulence (1/3). However, the scaling exponent for ε changed from a Gaussian-Kolmogorov value of 0.373±0.005 during 1997 (end of solar minimum) to an MHD turbulence value of 0.247±0.004 during 2003 (recurrent fast streams). Changes in the characteristics of solar wind turbulence may be reproducible from one solar cycle to the next.


Sign in / Sign up

Export Citation Format

Share Document