scholarly journals Evaluation of bag-of-features (BoF) technique for weed management in sugarcane production

2019 ◽  
pp. 1819-1825
Author(s):  
Wesley E Santiago ◽  
Neucimar J Leite ◽  
Bárbara J Teruel ◽  
Manoj Karkee ◽  
Carlos AM Azania

Weeds interfere in agricultural production, causing a reduction in crop yields and quality. The identification of weed species and the level of infestation is very important for the definition of appropriate management strategies. This is especially true for sugarcane, which is widely produced around the world. The present study has sought to develop and evaluate the performance of the Bag-of-Features (BoF) approach for use as a tool to aid decision-making in weed management in sugarcane production. The support vector machine to build a mathematical model of rank consisted of 30553 25x25-pixel images. Statistical analysis demonstrated the efficacy of the proposed method in the identification and classification of crops and weeds, with an accuracy of 71.6% and a Kappa index of 0.43. Moreover, even under conditions of high weed density and large numbers of overlapping and/or occluded leaves, weeds could be distinguished from crops This study clearly shows that the system can provide important subsidies for the formulation of strategies for weed management, especially in sugarcane, for which the timing of weed control is crucial.

2014 ◽  
Vol 2 (3) ◽  
pp. 275-278 ◽  
Author(s):  
Tika Bahadur Karki ◽  
Shrawan K. Sah ◽  
Resam B. Thapa ◽  
Andrew J. McDonald ◽  
Adam S. Davis ◽  
...  

Relay cropping of maize with fingermillet (maize/fingermillet) is the predominant cropping system for sustaining food security situation in the hilly regions of Nepal. In this region weed pressure severely reduces crop yields. Basic information on weed species composition, biomass production and their effect on crop yields and economics are lacking for this region. This information will be necessary to develop effective weed management strategies for the future. In light of this an empirical study was carried out in two representatives mid hill districts of Parbat and Baglung during summer season of 2010/2011 in Nepal. A total of 10 major weed species with densities of 172 in Parbat and 311 per 0.25m2 area in Baglung were observed. The highest percentage of both relative and absolute densities were recorded for Ageratum conyzoides in Parbat and Polygonum chinensis in Baglung. Weed infestation under farmers practice of crop management reduced the grain yield of maize by 1.985 Mt ha-1 (117%) in Baglung and 1.760 Mt ha-1 (108%) in Parbat. Similarly, in finger millet it was 0.489 Mt ha-1 (63%) in Baglung and 0.403 Mt ha-1 in Parbat. Similarly, the combined yield of both the crops was also significantly reduced by 79.3% and 61.7% in Baglung and Parbat respectively. Hence, weeds are directly affecting the crop performance in the region. Therefore, there is an urgent need to develop an alternative crop production system in the hills. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10790Int J Appl Sci Biotechnol, Vol. 2(3): 275-278  


Author(s):  
Abhinandan Singh ◽  
S. Pazhanisamy ◽  
Rodda Chandana Devi ◽  
Amit Kumar Singh ◽  
Chandra Mohan Mehta

Farmers view weeds as the number one barrier to organic rice production. Also, organic rice-growing farmers feel weed management is their number one priority, so they need more research about weed management under organic conditions from the researchers. Weeds can be considered a significant problem because they have a tendency to decrease crop yields by increasing competition for moisture, sunlight and nutrients also serving as host plants for pests and diseases. Since the development of herbicides, farmers have been used these chemicals to eradicate weeds from their fields. Using herbicides not only increased crop yields as well as reduced the labour required to remove weeds. Today, some farmers have a renewed interest in organic methods of managing weeds since the widespread use of agrochemicals has affected the environment and health. It has also been found that in some cases herbicides use can cause some weed species to dominate fields because the weeds develop resistance to herbicides. Moreover, some herbicides are destroying weeds that are harmless to crops, resulting in a potential decrease biodiversity. It is important to understand that under an organic system of seed control, weeds will never be eliminated but only managed. Consistent methods of weed management can reduce the costs and contribute to economical crop production without endangers the environment.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Alexandra M. Knight ◽  
Wesley J. Everman ◽  
David L. Jordan ◽  
Ronnie W. Heiniger ◽  
T. Jot Smyth

Adequate fertility combined with effective weed management is important in maximizing corn (Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth (Amaranthus palmeri S. Wats.) and large crabgrass (Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


Weed Science ◽  
1997 ◽  
Vol 45 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Karl W. VanDevender ◽  
Thomas A. Costello ◽  
Roy J. Smith

Economic assessment of weed management strategies in rice is dependent upon a quantitative estimate of the yield impact of a given weed population. To assist rice producers in making such assessments, a mathematical model was developed to predict rice yield reduction as a function of weed density and duration of interference. The nonlinear empirical model was a unique 3-dimensional adaptation of the Richards equation with 4 parameters. Using published data, individual parameter values were fitted for each of 6 weed species interfering with either conventional or semi-dwarf statured rice cultivars. The functional form of the equation produced surfaces that were qualitatively consistent with available data and experience regarding rice-weed biology. Hence, predictions from the model should be useful and reliable in assessing the economic impact of weeds and in determining the feasibility of alternative weed control treatments for various field scenarios.


2018 ◽  
Vol 35 (0) ◽  
Author(s):  
M.R.M. SILVA ◽  
E.A. COSTA ◽  
M.J.P. CORRÊA ◽  
A.A.C. RODRIGUES ◽  
M.L.R. MESQUITA

ABSTRACT: Knowledge of the floristic composition and vegetation structure are essential conditions for development of more efficient and economic weed management strategies in crops in the humid tropics. The objective of the research was to carry on floristic and phytosociological surveys to know the main weeds in upland rice fields in the humid tropics of the Brazilian State of Maranhão. Weed samples were done by means of an open metal rectangle of 0.15 m2 thrown at random in the vegetative and reproductive stages of rice crop in 2009/10 and 2010/2011 harvest. A total of 65 species from 23 families was identified 35 (53.85%) from the eudicotyledons botanical group, 29 (44.06%) from the monocotyledonous and one (1.53%) belonged to the pteridophytes. The most representative families were from the monocotyledonous botanical group including Poaceae and Cyperaceae, followed by Amaranthaceae and Malvaceae, both from the eudicotyledons group. The weed species with higher importance values in the upland rice crop vegetative stage were Urochloasp., Panicumsp., C. flavus, C. benghalensis and C. argutus whereas in the reproductive stage the higher importance values were recorded for S. latifolia, C. argutus, L. octovalvis, A.tenella and P.maximum. The most important weeds in the crop vegetative phase were mainly from the monocotyledonous group, while in reproductive one they were the eudicotyledons. Weed diversity was high and the floristic similarity was lower in the vegetative one compared to the reproductive stage of upland rice cultivation in the humid tropics.


2000 ◽  
Vol 134 (3) ◽  
pp. 237-244 ◽  
Author(s):  
U. BOSTRÖM ◽  
M. HANSSON ◽  
H. FOGELFORS

The influence of herbicides at reduced rates and repeated stubble-cultivation on weeds and crop yields was estimated in five field trials with spring-sown cereals situated in the south of Sweden during the autumn of 1989 until the spring of 1997. Stubble-cultivation was accomplished during 1989–1996, while herbicides were applied at 0, 1/8, 1/4 or 1/2 of full dose during 1990–1996.In the spring of 1997, i.e. after 7 years without herbicide application, seedling densities 3 weeks after weed emergence were 68–340/m2 at three sites and 535–610/m2 at two sites when averaged over tillage treatments.Averaged over herbicide doses, stubble-cultivation reduced the plant density of annual broad- leaved weeds by 6–32% at three sites and increased the density by 25% at one site. At the remaining site, the density was not significantly influenced. Stubble-cultivation reduced the populations of two perennial and seven annual weed species, while one species was stimulated and nine species showed null, or inconsistent, responses. In the spring of 1997, i.e. one year after the last herbicide application, the densities of weed seedlings in 1/8, 1/4 and 1/2-doses were 34, 46 and 56% lower, respectively, than in the untreated controls.Stubble-cultivation increased crop yields at four sites by 200 kg/ha as a mean over herbicide doses. At these four sites, averaged over 1993–1995, herbicides increased yields in plots that were not stubble-cultivated by 7, 8 and 10% in the 1/8, 1/4 and 1/2 of a full dose, respectively, relative to the untreated control. In 1996, herbicides increased yields at only two sites.It is concluded that a fruitful way for weed management with a low input of agrochemicals is to combine the use of herbicides at reduced rates with repeated stubble-cultivation.


Weed Science ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 312-320 ◽  
Author(s):  
Heino B. Papenfus ◽  
Manoj G. Kulkarni ◽  
Martin Pošta ◽  
Jeffrey F. Finnie ◽  
Johannes Van Staden

Weeds pose a great problem to farmers worldwide, and controlling weeds demands a high input cost for herbicides and labor. Because of current environmental regulations, a limited number of herbicides are commercially available (with limited modes of action) to control weeds. Smoke water and the biologically active compounds isolated from smoke affect seed germination in a significant way. Smoke water (SW) and karrikinolide (KAR1, the germination stimulant isolated from smoke) have been tested extensively for their ability to promote seed germination in a vast array of plant species. In addition to KAR1, a germination inhibitor, trimethylbutenolide (TMB), was also isolated from plant-derived smoke. The effects of SW, KAR1, and TMB were tested on five major weed species of South Africa: fleabane, hairy wild lettuce, bugweed, spilanthes, and fameflower. Seeds of these weed species were subjected to 16/8 h light/dark conditions or to constant dark conditions at constant temperatures of 20, 25, 30 C and alternating 30/20 C. SW and KAR1significantly increased germination, whereas TMB significantly inhibited germination of these weed species. Furthermore, TMB treatment reduced the amylase activity of the tested weed seeds compared with the water control. These results indicate the possibility of manipulating germination of certain weed seeds by SW, KAR1, and TMB. Thus, smoke and smoke-isolated compounds could potentially be used in new weed management strategies.


2020 ◽  
Author(s):  
Akashdeep Singh ◽  
S. S. Rana ◽  
Anju Bala

Chickpea (Cicer arietinum) is one of the most important pulse crops but it’s productivity in India is quite low. There are various reasons for low productivity. Weed control is the basic requirement and the major component of crop management. Weeds on an average reduce the crop yield by 40-87 per cent. Deciding time to control weeds requires detailed knowledge of the weed populations in the field. Different management practices like altering spacing, competitive cultivars, etc. can help in enhancing the productivity. With the world entering the precision-farming era, more emphasis is being put on the use of post-emergence herbicides. Application of two or more herbicide at the same time or as a double knockdown and integrating with hand-weeding provides desirable control of different weed species besides reducing the hazard of chemical weed control.


Weed Science ◽  
2008 ◽  
Vol 56 (3) ◽  
pp. 477-483 ◽  
Author(s):  
Jim S. Broatch ◽  
Lloyd M. Dosdall ◽  
John T. O'Donovan ◽  
K Neil Harker ◽  
George W. Clayton

Weed management strategies can influence insect infestations in field crops, yet no attempts have been made previously to manipulate weed populations in canola for integrated weed and insect management. Field studies were conducted during 2003 to 2005 at Lacombe and Beaverlodge, Alberta, Canada to manipulate weed and root maggot, Delia spp. (Diptera: Anthomyiidae), interactions in canola. Densities of monocot weeds were varied by altering herbicide applications, with rates ranging from 0 to 100% of the rate recommended. Weed populations declined, and yields were variable with increased herbicide rates. Root maggot damage decreased with increases in monocot weed dry weight for both canola species at both study sites. Results support the hypothesis that heterogenous environments, arising from mixed populations of monocot weeds with canola, minimize opportunities for females of Delia spp. to complete the behavioral sequence required for oviposition, leading to reduced infestation levels in weedy systems. However, effects of dicot weeds on root maggot infestations varied between sites as a result of site-related differences in weed species complexes. When wild mustard was common, crop damage increased, because this weed can serve as an alternate host for root maggots. The study emphasizes the importance of adopting crop management practices that are compatible for both weed and root maggot control.


Sign in / Sign up

Export Citation Format

Share Document