scholarly journals Changes in the Atmospheric Circulation over the North Pacific-North America Area since 1950

1992 ◽  
Vol 70 (6) ◽  
pp. 1137-1146 ◽  
Author(s):  
Tsing-Chang Chen ◽  
Harryvan Loon ◽  
Kuang-Der Wu ◽  
Ming-Cheng Yen
2012 ◽  
Vol 25 (14) ◽  
pp. 4993-5010 ◽  
Author(s):  
Ying Li ◽  
Ngar-Cheung Lau

Abstract The spatiotemporal evolution of various meteorological phenomena associated with El Niño–Southern Oscillation (ENSO) in the North Pacific–North American–North Atlantic sector is examined using both NCEP–NCAR reanalyses and output from a 2000-yr integration of a global coupled climate model. Particular attention is devoted to the implications of downstream eddy developments on the relationship between ENSO and the atmospheric circulation over the North Atlantic. The El Niño–related persistent events are characterized by a strengthened Pacific subtropical jet stream and an equatorward-shifted storm track over the North Pacific. The wave packets that populate the storm tracks travel eastward through downstream development. The barotropic forcing of the embedded synoptic-scale eddies is conducive to the formation of a flow that resembles the negative phase of the North Atlantic Oscillation (NAO). The more frequent and higher persistence of those episodes during El Niño winters contribute to the prevalence of negative NAO conditions. The above processes are further delineated by conducting a case study for the 2009/10 winter season, in which both El Niño and negative NAO conditions prevailed. It is illustrated that the frequent and intense surface cyclone development over North America and the western Atlantic throughout that winter are associated with upper-level troughs propagating across North America, which in turn are linked to downstream evolution of wave packets originating from the Pacific storm track.


2017 ◽  
Vol 30 (21) ◽  
pp. 8469-8479 ◽  
Author(s):  
Bingyi Wu

The winter Arctic atmosphere in the middle and lower troposphere has shifted to a warmer stage since the winter of 2004/05 relative to the mean averaged from 1979/80 to 2003/04. Recent Arctic warm anomalies are concurrent with warm anomalies over the North Pacific, northern Africa, and the low latitudes of both the North American and Asian continents and with cold anomalies over the middle and high latitudes of Eurasia and North America. Meanwhile, strengthened winter SLP is observed in the middle and high latitudes of Eurasia, the Siberian marginal seas of the Arctic Ocean, and the North Pacific. Correspondingly, winter 500-hPa geopotential height anomalies exhibit wave train structures over Eurasia, the North Pacific, and North America. These major features frequently reappear since the winter of 2004/05. A regionally averaged winter SLP in 40°–65°N, 30°E–150°W can be regarded as the intensity index to characterize interannual variability of the atmospheric circulation anomaly associated with recent Arctic warm anomalies. This atmospheric circulation anomaly differs from the Arctic dipole anomaly and displays a closer association with atmospheric variability over the middle and low latitudes relative to the Arctic. It directly connects Arctic warm anomalies in the middle and lower troposphere to increased frequencies of extreme cold events in the middle and low latitudes of Eurasia and western North Pacific, and western North America. This study also implies that SST cooling in the tropical central and eastern Pacific may also contribute to recent Arctic warm anomalies, although its impact mechanism is not clear yet.


2021 ◽  
pp. 1-43
Author(s):  
Jonathan D. Beverley ◽  
Matthew Collins ◽  
F. Hugo Lambert ◽  
Robin Chadwick

AbstractThe El Niño-Southern Oscillation (ENSO) is the leading mode of interannual climate variability and it exerts a strong influence on many remote regions of the world, for example in northern North America. Here, we examine future changes to the positive-phase ENSO teleconnection to the North Pacific/North America sector and investigate the mechanisms involved. We find that the positive temperature anomalies over Alaska and northern North America that are associated with an El Niño event in the present day are much weaker, or of the opposite sign, in the CMIP6 abrupt 4×CO2 experiments for almost all models (22 out of 26, of which 15 are statistically significant differences). This is largely related to changes to the anomalous circulation over the North Pacific, rather than differences in the equator-to-pole temperature gradient. Using a barotropic model, run with different background circulation basic states and Rossby wave source forcing patterns from the individual CMIP6 models, we find that changes to the forcing from the equatorial central Pacific precipitation anomalies are more important than changes in the global basic state background circulation. By further decomposing this forcing change into changes associated with the longitude and magnitude of ENSO precipitation anomalies, we demonstrate that the projected overall eastward shift of ENSO precipitation is the main driver of the temperature teleconnection change, rather than the increase in magnitude of El Niño precipitation anomalies which are, nevertheless, seen in the majority of models.


2019 ◽  
Vol 32 (19) ◽  
pp. 6271-6284 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Ping Liang ◽  
Jieshun Zhu

Abstract In this work, the roles of El Niño–Southern Oscillation (ENSO) in the variability and predictability of the Pacific–North American (PNA) pattern and precipitation in North America in winter are examined. It is noted that statistically about 29% of the variance of PNA is linearly linked to ENSO, while the remaining 71% of the variance of PNA might be explained by other processes, including atmospheric internal dynamics and sea surface temperature variations in the North Pacific. The ENSO impact is mainly meridional from the tropics to the mid–high latitudes, while a major fraction of the non-ENSO variability associated with PNA is confined in the zonal direction from the North Pacific to the North American continent. Such interferential connection on PNA as well as on North American climate variability may reflect a competition between local internal dynamical processes (unpredictable fraction) and remote forcing (predictable fraction). Model responses to observed sea surface temperature and model forecasts confirm that the remote forcing is mainly associated with ENSO and it is the major source of predictability of PNA and winter precipitation in North America.


2020 ◽  
Vol 33 (5) ◽  
pp. 1691-1706 ◽  
Author(s):  
Shizuo Liu ◽  
Qigang Wu ◽  
Steven R. Schroeder ◽  
Yonghong Yao ◽  
Yang Zhang ◽  
...  

AbstractPrevious studies show that there are substantial influences of winter–spring Tibetan Plateau (TP) snow anomalies on the Asian summer monsoon and that autumn–winter TP heavy snow can lead to persisting hemispheric Pacific–North America-like responses. This study further investigates global atmospheric responses to realistic extensive spring TP snow anomalies using observations and ensemble transient model integrations. Model ensemble simulations are forced by satellite-derived observed March–May TP snow cover extent and snow water equivalent in years with heavy or light TP snow. Heavy spring TP snow causes simultaneous significant local surface cooling and precipitation decreases over and near the TP snow anomaly. Distant responses include weaker surface cooling over most Asian areas surrounding the TP, a weaker drying band extending east and northeast into the North Pacific Ocean, and increased precipitation in a region surrounding this drying band. Also, there is tropospheric cooling from the TP into the North Pacific and over most of North America and the North Atlantic Ocean. The TP snow anomaly induces a negative North Pacific Oscillation/western Pacific–like teleconnection response throughout the troposphere and stratosphere. Atmospheric responses also include significantly increased Pacific trade winds, a strengthened intertropical convergence zone over the equatorial Pacific Ocean, and an enhanced local Hadley circulation. This result suggests a near-global impact of the TP snow anomaly in nearly all seasons.


Sign in / Sign up

Export Citation Format

Share Document