scholarly journals A Low Cost and Low Power Consumption Automatic Water Meter Reading System: Hardware Investigation and Network Design

2015 ◽  
Vol 4 (3-4) ◽  
Author(s):  
Lap-Luat Nguyen ◽  
Huu-Tue Huynh ◽  
Tuan-Duc Nguyen

This paper presents a low power consumption and low cost automatic data collection network for water meter application. Based on transmission performance and power consumption, several low cost sub-GHz wireless transceivers are analyzed and compared, and consequently a suitable hardware is chosen. The associated network protocol stack is also examined. To construct the automatic collecting data mechanism, we consider a cluster based wireless sensor network (WSN) where routers and a GPRS gateway are used to link each cluster to a data collection center. Advantages of this proposed configuration are the simple implementation, low cost and low power consumption. By using the Monte Carlo simulation technique, packet delivery ratio and power consumption for different topologies are investigated. Based on obtained results, the optimum network topology for automatic water meter reading in a typical urban environment is finally proposed.

2012 ◽  
Vol 184-185 ◽  
pp. 1613-1617
Author(s):  
Jin Fang Zhu

This article studies the embedded SPC and its application in roundness measuring system by analyzing the current roundness measurement principle and technology. With analyzing the process of data collection, date treatment and various kinds of tool graphic construction, we study the feasibility of integrating SPC into roundness measurement and finally apply the embedded SPC as pure software into roundness measuring system. We design the roundness measuring system based on embedded SPC and develop the roundness measuring system of low power consumption, high accuracy and easy application, which is suitable for industry field usage.


2020 ◽  
Vol 2 (9) ◽  
pp. 4172-4178
Author(s):  
Matias Kalaswad ◽  
Bruce Zhang ◽  
Xuejing Wang ◽  
Han Wang ◽  
Xingyao Gao ◽  
...  

Integration of highly anisotropic multiferroic thin films on silicon substrates is a critical step towards low-cost devices, especially high-speed and low-power consumption memories.


2011 ◽  
Vol 135-136 ◽  
pp. 886-892
Author(s):  
Wen Hui Chen ◽  
Xin Xi Meng ◽  
Xiao Min Liu

In order to process and analyze the signal of frequency modulated continuous wave (FMCW) radar, a radar semi-physical simulation(RSPS) system based on STM32F103VE6 chip is designed in this paper. By designing the hardware and software of system, the RSPS system can process the radar signal, detect the target, verify the data process algorithm and display the result on TFT-LCD screen. In addition, the collected data can be uploaded to PC by RS-232 interfaces which improves the reliability, stability and practicability of system. The waveform and spectrum maps are utilized to show the feasibility of RSPS system in analysing FMCW radar signal. Experimental results show that this system has many advantages, such as multifunction, low power consumption and low cost.


2012 ◽  
Vol 198-199 ◽  
pp. 1603-1608
Author(s):  
Qing Hua Shang ◽  
Ping Liu

Wireless technology has walked into the People's Daily life, Bluetooth technology comes to the fore in so many wireless technologies with its low power consumption, low cost and other characteristics. Bluetooth technology is used widely, we can see it in mobile phones or in our cars, it seems that Bluetooth technology has penetrated into every aspect of our lives. Even so, the combination of Bluetooth technology and fixed telephone still has a very big development space. If the stability of the fixed telephone combined with the flexible of Bluetooth technology, it will give the life of people a lot of convenience. This paper will introduces the Bluetooth hands free system for fixed telephone, it is such a product that it will make Bluetooth technology and common fixed phone combined, and make it a reality that people can use common Bluetooth headset to answer or call a fixed telephone.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9681
Author(s):  
Akira Yoshioka ◽  
Akira Shimizu ◽  
Hiroyuki Oguma ◽  
Nao Kumada ◽  
Keita Fukasawa ◽  
...  

Although dragonflies are excellent environmental indicators for monitoring terrestrial water ecosystems, automatic monitoring techniques using digital tools are limited. We designed a novel camera trapping system with an original dragonfly detector based on the hypothesis that perching dragonflies can be automatically detected using inexpensive and energy-saving photosensors built in a perch-like structure. A trial version of the camera trap was developed and evaluated in a case study targeting red dragonflies (Sympetrum spp.) in Japan. During an approximately 2-month period, the detector successfully detected Sympetrum dragonflies while using extremely low power consumption (less than 5 mW). Furthermore, a short-term field experiment using time-lapse cameras for validation at three locations indicated that the detection accuracy was sufficient for practical applications. The frequency of false positive detection ranged from 17 to 51 over an approximately 2-day period. The detection sensitivities were 0.67 and 1.0 at two locations, where a time-lapse camera confirmed that Sympetrum dragonflies perched on the trap more than once. However, the correspondence between the detection frequency by the camera trap and the abundance of Sympetrum dragonflies determined by field observations conducted in parallel was low when the dragonfly density was relatively high. Despite the potential for improvements in our camera trap and its application to the quantitative monitoring of dragonflies, the low cost and low power consumption of the detector make it a promising tool.


Sign in / Sign up

Export Citation Format

Share Document