scholarly journals Study on dynamic response of track structures under a variable speed moving harmonic load

2017 ◽  
Vol 14 ◽  
pp. 214-219
Author(s):  
Yan Qi Liu ◽  
Yan Zhang ◽  
Chun Fang Song ◽  
Long Long Xu
2017 ◽  
Vol 15 ◽  
pp. 165-165
Author(s):  
Yan Qi Liu ◽  
Yan Zhang ◽  
Chun Fang Song ◽  
Long Long Xu

2019 ◽  
Vol 8 (1) ◽  
pp. 250-260 ◽  
Author(s):  
Mehdi Alimoradzadeh ◽  
Mehdi Salehi ◽  
Sattar Mohammadi Esfarjani

Abstract In recent years, structures made of Functionally Graded materials (FGMs) are used in industries due to the continuously compositional variation of the constituents in FGMs along different directions. In order to develop FGMs, nonlinear vibration analysis to study dynamic behavior is needed. This study proposes nonlinear vibration analysis of a simply supported axially functionally graded (AFG) beam subjected to a moving harmonic load as an Euler-Bernoulli beam utilizing Green’s strain tensor. Axial variation of material properties of the beam is based on the power law. The governing equations of motion are derived via Hamilton’s principle. The Galerkin’s method is implemented to reduce the nonlinear partial differential equations of the system to a number of nonlinear ordinary differential equations. He’s variational method is applied to obtain approximate analytical expressions for the nonlinear frequency and the nonlinear dynamic response of the AFG beam. The effect of some parameters such as the power index and stiffness coefficients, among others, on the nonlinear natural frequency has been investigated. The influence of above mentioned parameters as well as the velocity of the moving harmonic load on the nonlinear dynamic response has been studied. The results indicate that these parameters have a considerable effect on both nonlinear natural frequency and response amplitude.


2007 ◽  
Vol 74 (6) ◽  
pp. 1212-1224 ◽  
Author(s):  
Lu Sun

In this paper, fast Fourier transform and complex analysis are used to analyze the dynamic response of slabs on a viscoelastic foundation caused by a moving harmonic load. Critical speed and resonance frequency of the slab to a moving harmonic load are obtained analytically. It is proved that there exists a bifurcation in critical speed. One branch of critical speed increases as load frequency increases, while the other branch of critical speed decreases as load frequency increases. There are two critical speeds when the load frequency is low, but only one critical speed exists when the load frequency is high. A parametric study is also performed to study the effect of load speed, load frequency, material properties of the slab and the damping coefficient on dynamic response. It is found that the damping coefficient has significant influence on dynamic response. For small damping, the maximum response of the slab increases with increased load speed and frequency. However, for large damping, the maximum response of the slab decreases with increased load speed and frequency.


2012 ◽  
Vol 178-181 ◽  
pp. 2019-2022
Author(s):  
Ke Li ◽  
Jing Ji

On the basis of typical theory on vibration analysis of the bridge and vehicles, by using the ANSYS software, a finite element model of the bridge is established. The character on dynamic response of bridge is analyzed when harmonic Loads with different frequencies pass through the bridge, and inner-force of bridge is given. The research will give beneficial rules for the vibration control of bridge under moving loads.


2018 ◽  
Vol 8 (7) ◽  
pp. 1201 ◽  
Author(s):  
Haigang Ding ◽  
Jiyun Zhao ◽  
Gang Cheng ◽  
Steve Wright ◽  
Yufeng Yao

A new leaking valve-pump parallel control (LVPC) oil hydraulic system is proposed to improve the performance of dynamic response of present variable speed pump control (VSPC) system, which is an oil hydraulic control system with saving energy. In the LVPC, a control valve is operating at leaking status, together with a variable speed pump, to regulate the system flow of hydraulic oil simultaneously. Therefore, the degree of valve control and pump control can be adjusted by regulating the valve-pump weight ratio. The LVPC system design, mathematical model development, system parameter and control performance analysis are carried out systematically followed by an experimental for validation process. Results have shown that after introducing the valve control, the total leakage coefficient increases significantly over a wide range with the operating point and this further increases damping ratios and reduces the velocity stiffness. As the valve-pump weight ratio determines the flow distribution between the valve and the pump and the weight factors of the valve and/or the pump controls determines the response speed of the LVPC system, thus if the weight factors are constrained properly, the LVPC system will eventually have a large synthetic open-loop gain and it will respond faster than the VSPC system. The LVPC will enrich the control schemes of oil hydraulic system and has potential value in application requiring of fast response.


Sign in / Sign up

Export Citation Format

Share Document