scholarly journals Nonlinear Dynamic Response of an Axially Functionally Graded (AFG) Beam Resting on Nonlinear Elastic Foundation Subjected to Moving Load

2019 ◽  
Vol 8 (1) ◽  
pp. 250-260 ◽  
Author(s):  
Mehdi Alimoradzadeh ◽  
Mehdi Salehi ◽  
Sattar Mohammadi Esfarjani

Abstract In recent years, structures made of Functionally Graded materials (FGMs) are used in industries due to the continuously compositional variation of the constituents in FGMs along different directions. In order to develop FGMs, nonlinear vibration analysis to study dynamic behavior is needed. This study proposes nonlinear vibration analysis of a simply supported axially functionally graded (AFG) beam subjected to a moving harmonic load as an Euler-Bernoulli beam utilizing Green’s strain tensor. Axial variation of material properties of the beam is based on the power law. The governing equations of motion are derived via Hamilton’s principle. The Galerkin’s method is implemented to reduce the nonlinear partial differential equations of the system to a number of nonlinear ordinary differential equations. He’s variational method is applied to obtain approximate analytical expressions for the nonlinear frequency and the nonlinear dynamic response of the AFG beam. The effect of some parameters such as the power index and stiffness coefficients, among others, on the nonlinear natural frequency has been investigated. The influence of above mentioned parameters as well as the velocity of the moving harmonic load on the nonlinear dynamic response has been studied. The results indicate that these parameters have a considerable effect on both nonlinear natural frequency and response amplitude.

Author(s):  
Zhicheng Yang ◽  
Meifung Tam ◽  
Yingyan Zhang ◽  
Sritawat Kitipornchai ◽  
Jiangen Lv ◽  
...  

This paper presents a numerical investigation on the nonlinear dynamic response of multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) beam with open edge cracks in thermal environment. It is assumed that graphene platelets (GPLs) in each GPLRC layer are uniformly distributed and randomly oriented with its concentration varying layer-wise along the thickness direction. The effective material properties of each GPLRC layer are predicted by Halpin-Tsai micromechanics-based model. Finite element method is employed to calculate the dynamic response of the cracked FG-GPLRC beam. It is found that the maximum dynamic deformation of the cracked FG-GPLRC beam under dynamic loading is quite sensitive to the crack location and grows with an increase in the crack depth ratio (CDR) and temperature rise. The influences of GPL distribution, concentration, geometry as well as the boundary conditions on the dynamic response characteristics of cracked FG-X-GPLRC beams are also investigated comprehensively.


2018 ◽  
Vol 22 (3) ◽  
pp. 658-688 ◽  
Author(s):  
Nguyen Dinh Duc ◽  
Ngo Duc Tuan ◽  
Pham Hong Cong ◽  
Ngo Dinh Dat ◽  
Nguyen Dinh Khoa

Based on the first order shear deformation shell theory, this paper presents an analysis of the nonlinear dynamic response and vibration of imperfect eccentrically stiffened functionally graded material (ES-FGM) cylindrical panels subjected to mechanical, thermal, and blast loads resting on elastic foundations. The material properties are assumed to be temperature-dependent and graded in the thickness direction according to simple power-law distribution in terms of the volume fractions of the constituents. Both functionally graded material cylindrical panels and stiffeners having temperature-dependent properties are deformed under temperature, simultaneously. Numerical results for the dynamic response of the imperfect ES-FGM cylindrical panels with two cases of boundary conditions are obtained by the Galerkin method and fourth-order Runge–Kutta method. The results show the effects of geometrical parameters, material properties, imperfections, mechanical and blast loads, temperature, elastic foundations and boundary conditions on the nonlinear dynamic response of the imperfect ES-FGM cylindrical panels. The obtained numerical results are validated by comparing with other results reported in the open literature.


Author(s):  
Zhenfang Xin ◽  
S. A. Neild ◽  
D. J. Wagg

The normal form technique is an established method for analysing weakly nonlinear vibrating systems. It involves applying a simplifying nonlinear transform to the first-order representation of the equations of motion. In this paper we consider the normal form technique applied to a forced nonlinear system with the equations of motion expressed in second-order form. Specifically we consider the selection of the linearised natural frequencies on the accuracy of the normal form prediction of sub- and superharmonic responses. Using the second-order formulation offers specific advantages in terms of modeling lightly damped nonlinear dynamic response. In the second-order version of the normal form, one of the approximations made during the process is to assume that the linear natural frequency for each mode may be replaced with the response frequencies. Here we will show that this step, far from reducing the accuracy of the technique, does not affect the accuracy of the predicted response at the forcing frequency and actually improves the predictions of sub and superharmonic responses. To gain insight into why this is the case, we consider the Duffing oscillator. The results show that the second-order approach gives an intuitive model of the nonlinear dynamic response which can be applied to engineering applications with weakly nonlinear characteristics.


Sign in / Sign up

Export Citation Format

Share Document