scholarly journals AN ELECTRON FRACTOGRAPHIC STUDY OF THE INFLUENCE OF ANNEALING CONDITIONS UPON DUCTILE RUPTURE PROCESS IN Cu-Zn BRASSES

Author(s):  
TAHA GOMAA ◽  
NABIL FAT-HALLA ◽  
MAZEN NEGM ◽  
MOHAMMAD REFAI
2006 ◽  
Vol 2006 (suppl_23_2006) ◽  
pp. 287-292 ◽  
Author(s):  
T. Kryshtab ◽  
J. Palacios-Gómez ◽  
M. Mazin

Author(s):  
N. Chinone ◽  
Y. Cho ◽  
R. Kosugi ◽  
Y. Tanaka ◽  
S. Harada ◽  
...  

Abstract A new technique for local deep level transient spectroscopy (DLTS) imaging using super-higher-order scanning nonlinear dielectric microscopy is proposed. Using this technique. SiCVSiC structure samples with different post oxidation annealing conditions were measured. We observed that the local DLTS signal decreases with post oxidation annealing (POA), which agrees with the well-known phenomena that POA reduces trap density. Furthermore, obtained local DLTS images had dark and bright areas, which is considered to show the trap distribution at/near SiCVSiC interface.


2000 ◽  
Author(s):  
A. A. Kapusta ◽  
J. H. Underwood
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 131
Author(s):  
Tingting Xiao ◽  
Qi Yang ◽  
Jian Yu ◽  
Zhengwei Xiong ◽  
Weidong Wu

FePt nanoparticles (NPs) were embedded into a single-crystal MgO host by pulsed laser deposition (PLD). It was found that its phase, microstructures and physical properties were strongly dependent on annealing conditions. Annealing induced a remarkable morphology variation in order to decrease its total free energy. H2/Ar (95% Ar + 5% H2) significantly improved the L10 ordering of FePt NPs, making magnetic coercivity reach 37 KOe at room temperature. However, the samples annealing at H2/Ar, O2, and vacuum all showed the presence of iron oxide even with the coverage of MgO. MgO matrix could restrain the particles’ coalescence effectively but can hardly avoid the oxidation of Fe since it is extremely sensitive to oxygen under the high-temperature annealing process. This study demonstrated that it is essential to anneal FePt in a high-purity reducing or ultra-high vacuum atmosphere in order to eliminate the influence of oxygen.


Measurement ◽  
2021 ◽  
Vol 178 ◽  
pp. 109443
Author(s):  
W. Macek ◽  
Z. Marciniak ◽  
R. Branco ◽  
D. Rozumek ◽  
G.M. Królczyk

2016 ◽  
Vol 26 (4) ◽  
pp. 1-3
Author(s):  
M. Lei ◽  
M. H. Pu ◽  
Y. Zhang ◽  
Y. Zhao

2021 ◽  
Vol 119 (4) ◽  
pp. 042901
Author(s):  
Subhajit Mohanty ◽  
Islam Sayed ◽  
Zhe (Ashley) Jian ◽  
Umesh Mishra ◽  
Elaheh Ahmadi

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 178
Author(s):  
Jin Young Jung ◽  
Kang Suk An ◽  
Pyeong Yeol Park ◽  
Won Jong Nam

The relationship between microstructures and ductility parameters, including reduction of area, elongation to failure, occurrence of delamination, and number of turns to failure in torsion, in hypereutectoid pearlitic steel wires was investigated. The transformed steel wires at 620 °C were successively dry-drawn to drawing strains from 0.40 to 2.38. To examine the effects of hot-dip galvanizing conditions, post-deformation annealing was performed on cold drawn steel wires (ε = 0.99, 1.59, and 2.38) with a different heating time of 30–3600 s at 500 °C in a salt bath. In cold drawn wires, elongation to failure dropped due to the formation of dislocation substructures, decreased slowly due to the increase of dislocation density, and saturated with drawing strain. During annealing, elongation to failure increased due to recovery, and saturated with annealing time. The variation of elongation to failure in cold drawn and annealed steel wires would depend on the distribution of dislocations in lamellar ferrite. The orientation of lamellar cementite and the shape of cementite particles would become an effective factor controlling number of turns to failure in torsion of cold drawn and annealed steel wires. The orientation and shape of lamellar cementite would become microstructural features controlling reduction of area of cold drawn and annealed steel wires. The density of dislocations contributed to reduction of area to some extent.


Sign in / Sign up

Export Citation Format

Share Document