scholarly journals Effect of Coiling Temperature on The Fracture Toughness of Low Carbon Steel.(Dept.M)

2021 ◽  
Vol 15 (1) ◽  
pp. 55-60
Author(s):  
Hassan Hedeya ◽  
Mohamed Shabara ◽  
Ahmed El-Kiran ◽  
S. Abdel-Rasoul
Alloy Digest ◽  
1987 ◽  
Vol 36 (2) ◽  

Abstract SAE 1020 is a low-carbon steel combining good machinability, workability and weldability. It is carburized for use in case-hardened components and it is used for a wide range of applications in the hot-worked, cold-worked, normalized or quenched-and-tempered conditions. Its many uses include bolts, rods, plate applications, machinery components, case-hardened parts, spinning tools and trimming dies. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: CS-113. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1972 ◽  
Vol 21 (8) ◽  

Abstract AISI 1015 is a low-carbon steel used in the annealed, cold-worked, hot-rolled or normalized condition for general purpose construction and engineering. It is also used for case-hardened components. It combines good machinability, good workability and good weldability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-48. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1969 ◽  
Vol 18 (10) ◽  

Abstract USS 1/2% Cr-1/2% Mo is a low-alloy low-carbon steel recommended for use in steam service to reduce susceptibility to graphitization up to 950 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-245. Producer or source: United States Steel Corporation.


2009 ◽  
Vol 633-634 ◽  
pp. 471-480
Author(s):  
Masaki Tanaka ◽  
Kenji Higashida ◽  
Tomotsugu Shimokawa

Brittle-ductile transition (BDT) behaviour was investigated in low carbon steel deformed by an accumulative roll-bonding (ARB) process. The temperature dependence of its fracture toughness was measured by conducting four-point bending tests at various temperatures and strain rates. The fracture toughness increased while the BDT temperature decreased in the specimens deformed by the ARB process. Arrhenius plots between the BDT temperatures and the strain rates indicated that the activation energy for the controlling process of the BDT was not changed by the deformation with the ARB process. It was deduced that the decrease in the BDT temperature by grain refining was not due to the increase in the dislocation mobility controlled by short-range barriers. Quasi-three-dimensional simulations of dislocation dynamics, taking into account of crack tip shielding due to dislocations, were performed to investigate the effect of a dislocation source spacing along a crack front on the BDT. The simulation indicated that the BDT temperature is decreased with decreasing in the dislocation source spacing. Molecular dynamics simulations revealed that moving dislocations were impinged against grain boundaries and were reemitted from there with increasing strain. It indicates that grain boundaries can be new sources in ultra-fine grained materials, which increases toughness at low temperatures.


2011 ◽  
Vol 462-463 ◽  
pp. 407-412 ◽  
Author(s):  
Komsan Ngamkham ◽  
Satian Niltawach ◽  
Somrerk Chandra-ambhorn

The objective of this work was to carry out tensile tests to investigate the effect of finishing temperature on mechanical adhesion of thermal oxide scale on hot-rolled low carbon steel strips. Two hot-rolled low carbon steel strips were produced in an industrial hot rolling line by fixing a coiling temperature at 620 °C and varying finishing temperatures at 820 and 910 °C. Two testing methods were conducted. First, each of a number of samples was subjected to a given imposed strain with ex-situ imaging of scale surface after straining. Second, only one sample was strained in a test with ex-situ imaging of scale surface at every 2 mm elongation of the sample. A spallation ratio, an area where scale was spalled out and normalised by the total area observed by microscope, was plotted as a function of the imposed strain. These two methods gave the same tendency of results as follows. At a given strain, the spallation ratio of scale on steel produced using higher finishing temperature was larger. The gradient of spallation ratio with respect to the imposed strain of that scale was also steeper. This reflects the higher susceptibility of scale to spall out with increasing imposed strain. This behaviour might be related to the larger thickness of scale on steel produced using higher finishing temperature. For the second testing method, lowering the magnification of microscope to observe scale spallation from 50x to 20x increased R2 of the curve of spallation ratio versus the imposed strain, as well as improved the reproducibility of the test.


Author(s):  
K. H. Subramanian ◽  
A. J. Duncan ◽  
R. L. Sindelar

A materials test program was developed to measure mechanical properties of ASTM A285 Grade B low carbon steel for application to structural and flaw stability analysis of storage tanks at the Department of Energy (DOE) Savannah River Site (SRS). Under this plan, fracture toughness and tensile testing are being performed at conditions that are representative of storage tank conditions on steels that span compositions within ASTM A285 specifications. The testing is being done within the framework of a statistical test matrix and the data collected will be used to develop a predictive model for materials properties. The results presented herein are limited to a subset of data comparing for comparison of a recent vintage steel versus an older steel for fracture resistance behavior. These preliminary results indicate that dynamic loading rates result in a greater increase in the fracture toughness response in the case of the recent vintage steels of lower carbon content when compared to the archival heat of high carbon content. In addition, ductile tearing in the archival, high carbon steel was more likely to be interrupted by cleavage fracture at lower fracture energies than the modern, low carbon steel.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lili Cao ◽  
Ming Li ◽  
Jiazhi Zhang ◽  
Gang Lin ◽  
Baichuan Gong ◽  
...  

In order to study the mechanical properties of low-carbon steel under the coupling effect of the overall environment and the loads, the tensile mechanical test was carried out. The results indicated that, as the sea water concentration and tensile deterioration increased, both the mass-loss rate and surface roughness of the low-carbon steel gradually increased, and the yield strength, tensile strength, elongation, and section shrinkage decreased gradually. The mechanical parameters of the low-carbon steel were affected by the joint actions of the sea water concentration and tensile deterioration. The established mechanical model of low-carbon steel under the marine engineering environment shows that tensile deterioration had no effects on the fracture toughness, while the increase of sea water concentration could reduce the fracture toughness remarkably.


Sign in / Sign up

Export Citation Format

Share Document