scholarly journals Rotational speeds and preheating effect on the friction stir butt welding of Al-Cu joints

2022 ◽  
Vol 65 (3) ◽  
pp. 1-2
Author(s):  
H. Dawood ◽  
Abbas Mohammad ◽  
Kanaan Musa ◽  
Nawras Sabeeh
Keyword(s):  
Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 933
Author(s):  
SeongHwan Park ◽  
YoungHwan Joo ◽  
Myungchang Kang

Thin sheets of lightweight aluminum alloys, which are increasingly used in automotive, aerospace, and electronics industries to reduce the weight of parts, are difficult to weld. When applying micro-friction stir welding (μ-FSW) to thin plates, the heat input to the base materials is considerably important to counter the heat loss to the jig and/or backing plate. In this study, three different backing-plate materials—cordierite ceramic, titanium alloy, and copper alloy—were used to evaluate the effect of heat loss on weldability in the μ-FSW process. One millimeter thick AA6061-T6 and AA5052-H32 dissimilar aluminum alloy plates were micro-friction stir welded by a butt joint. The tensile test, hardness, and microstructure of the welded joints using a tool rotational speed of 9000 rpm, a welding speed of 300 mm/min, and a tool tilting angle of 0° were evaluated. The heat loss was highly dependent on the thermal conductivity of the backing plate material, resulting in variations in the tensile strength and hardness distribution of the joints prepared using different backing plates. Consequently, the cordierite backing plate exhibited the highest tensile strength of 222.63 MPa and an elongation of 10.37%, corresponding to 86.7% and 58.4%, respectively, of those of the AA5052-H32 base metal.


Measurement ◽  
2019 ◽  
Vol 148 ◽  
pp. 106915 ◽  
Author(s):  
He Ma ◽  
Yue Wang ◽  
Zhijie Tian ◽  
Linyu Xiong ◽  
Yanhua Zhang

2010 ◽  
Vol 29 (2) ◽  
pp. 204-215 ◽  
Author(s):  
Dongun Kim ◽  
Harsha Badarinarayan ◽  
Ji Hoon Kim ◽  
Chongmin Kim ◽  
Kazutaka Okamoto ◽  
...  

2011 ◽  
Vol 264-265 ◽  
pp. 217-222 ◽  
Author(s):  
Ben Yuan Lin ◽  
P. Yuan ◽  
Ju Jen Liu

The temperature distribution of 6061-T6 aluminum alloy plates under a friction stir butt-welding was investigated by using experiment and numerical simulation. A real-time temperature measuring system was used to measure the temperature change in the welding process. Vickers hardness profiles were made on the cross-section of the weld after welding. A commercial software of FlexPDE, a solver for partial different equations with finite element method, was used to simulate the experimental welding process of this study. Comparison the experimental and numerical results, the temperature cycles calculated by numerical are similar to those measured by experiment. The temperature distribution profile obtained from the numerical simulation is symmetrical to the weld center and has a close correspondence with the hardness configuration and the microstructure of the weld. The region with the temperature over 300 °C is the zone of softening within the boundaries of base material and HAZ. The regions of 350 °C with minimum hardness are located near the boundary of HAZ and TMAZ. The maxima temperature about 500 °C distributes around the upper part of the weld center. However, the region above 400 °C only matches with the upper half of the weld nugget.


2018 ◽  
Vol 1146 ◽  
pp. 98-105 ◽  
Author(s):  
Radu Cojocaru ◽  
Cristian Ciucă ◽  
Lia Nicoleta Boţilă ◽  
Victor Verbiţchi ◽  
Ion Aurel Perianu

In the paper are presented some preliminary results regarding the possibilities of using of the friction stir welding process (FSW) and FSW assisted with TIG (FSW – TIG) welding for joining of the electrical components in the automotive industry. Couples of dissimilar materials approached in experiments were Aluminium EN AW 1200 and Copper Cu99, with thicknesses in conformity with real cases in the production process. The results obtained for butt welding an overlap welding of different thicknesses of materials (aluminium thickness s1 = 2mm and copper thickness s2 = 5mm) are presented. There are some general conclusions regarding the possibilities of joining the two materials under the specified conditions.


Sign in / Sign up

Export Citation Format

Share Document