scholarly journals Therapeutic potential of low-fat yogurt supplemented with Dried Nabaq fruit (Zizyphus spina-christi L) on hyperglycemia in streptozotocin-induced diabetic rats.

2021 ◽  
Vol 36 (2) ◽  
pp. 149-201
Author(s):  
Siamak Shahidi ◽  
◽  
Alireza Komaki ◽  
Safoura Raoufi ◽  
Iraj Salehi ◽  
...  

Background/Aim: Hyperalgesia is one of the current complications of diabetes mellitus that Oxidative stress and inflammation have principal role in its development. Ellagic Acid (EA) as a herbal component, has some biological activities, including antioxidant and anti-inflammatory effects. This study was designed to evaluate the possible beneficial effect of EA on hyperalgesia in streptozotocin (STZ)-induced diabetic rat. Materials and Methods: Rats were divided into control(vehicle received), diabetic, EA (25, 50 mg/kg)-treated control and EA(25, 50 mg/kg)-treated diabetic groups. Diabetes was induced by a single intraperitoneal (IP) injection of streptozotocin (STZ) (60 mg/Kg). EA was administered daily by oral gavage for 4 weeks. Hyperalgesia was assessed using tail flick (TF) and hot plate (HP) tests. Also, oxidative stress markers including malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant capacity (TAC) in the serum were evaluated. Results: Diabetic animals showed marked reductions in TF and HP latencies, elevation of serum MDA level and TOS and diminution of serum TAC compared to controls significantly. Treatment of Diabetic rats with EA ameliorated reduction of TF latency at the dose of 25 mg/kg and HP latency at the dose of 50 mg/kg. Furthermore EA significantly increased TAC and decreased MDA level at dose of 50 mg/kg and reduced TOS at both doses in the serum of diabetic animals. In EA treated normal rats we could see no significant alterations in the parameters studied. Conclusion: These results displayed potent antinociceptive effect of EA in diabetic rats via attenuating oxidative stress. This proposes therapeutic potential of EA for damping diabetic hyperalgesia.


2014 ◽  
Vol 42 (05) ◽  
pp. 1169-1182 ◽  
Author(s):  
Yunkyung Han ◽  
Hyo Won Jung ◽  
Yong-Ki Park

The aim of the present study was to identify the selective therapeutic effects of Corni Fructus (Cornus officinalis Sieb. et Zucc.) on different organs in streptozotocin (STZ)-induced diabetic rats. Diabetes in rats was induced by intraperitonal injection with STZ at a dose of 30 mg/kg body weight (bw) for 3 days (once per a day). STZ-induced diabetic rats were orally administrated Corni Fructus (CF) extract at 300 mg/kg or metformin at 250 mg/kg daily for 4 weeks. Blood glucose and triglyceride (TG) in sera and urine total volume were measured. Histopathological changes of different organs, pancreas, liver, kidney, and lung tissues were observed by H&E staining. The expression of insulin and α-smooth muscle actin (α-SMA) was investigated in pancreas, and kidney by immunohistochemistry, respectively. The results revealed that CF extract significantly decreased the serum levels of blood glucose, and TG, and also urine total volume in STZ-induced diabetic rats. The histological examinations revealed amelioration of diabetes-induced pancreas injury including pathological changes of the Langerhans's islet and glomerular with their loss after the administration of CF extraction. Moreover, the administration of CF extract increased the numbers of insulin releasing beta cells in pancreas and also inhibited the expression of α-SMA in kidney of STZ-induced diabetic rats. On the other hand, CF extract showed no effect on the pathological damages of liver and lung in STZ-induced diabetic rats. These results demonstrated that CF extract may have a selective therapeutic potential through the control of hyperglycemia, and the protection of pancreas and kidney against diabetic damage.


2010 ◽  
Vol 298 (4) ◽  
pp. G563-G570 ◽  
Author(s):  
Jieyun Yin ◽  
Jie Chen ◽  
Jiande D. Z. Chen

The aim of this study was to investigate the effects and mechanisms of electroacupuncture (EA) on gastric accommodation, gastric dysrhythmia, and gastric emptying (GE) in streptozotocin (STZ)-induced diabetic rats. Five experiments were performed in five groups of STZ-induced diabetic rats to study the effects of EA at ST-36 (Zusanli) on gastric slow-wave dysrhythmia, delayed GE and intestinal transit, impaired gastric accommodation, and the mechanisms of EA involving the autonomic and opioidergic pathways. We found the following: 1) EA improved gastric dysrhythmia in the diabetic rats. The normal percentage of slow waves was 55.4 ± 2.9% at baseline and significantly increased to 69.2 ± 2.2% with EA ( P = 0.01); this effect was blocked by naloxone. 2) EA resulted in a 21.4% increase in GE and 18.2% increase in small intestinal transit in the diabetic rats. 3) EA restored diabetes-induced impairment in gastric accommodation. Gastric accommodation was 0.98 ± 0.13 ml with sham EA and significantly increased to 1.21 ± 0.15 ml with EA ( P = 0.01), and this effect was blocked by naloxone. 4) EA increased vagal activity assessed by the spectral analysis of the heart rate variability. We concluded that EA at ST-36 improves gastric dysrhythmia, delayed GE and intestinal transit, and impaired accommodation in STZ-induced diabetic rats, and the improvement seems to be mainly mediated via the vagal pathway. EA may have a promising therapeutic potential for diabetic gastroparesis.


1994 ◽  
Vol 56 (5) ◽  
pp. 983-991 ◽  
Author(s):  
A.E. Willing ◽  
E.K. Walls ◽  
H.S. Koopmans

Author(s):  
SULTANA RAJIA ◽  
KHADIZA KHANAM ◽  
UMME FARHANA ◽  
SOHANUR RAHMAN ◽  
RASHIDUL HAQUE

Objectives: Piper chaba, native to South and Southeast Asia, has been traditionally used as a medicinal plant. Aim of this study was to evaluate the antihyperglycemic and antihyperlipidemic activities of P. chaba root extracts (RE) in streptozotocin (STZ)-induced diabetic rats along with its antimicrobial activity. Methods: Diabetes was induced in Wister rats through the intraperitoneal administration of STZ (50 mg/kg b.w.). Antidiabetic and antilipidemic activities of the RE (in methanol, ethanol, ethyl acetate and distilled water) were evaluated by administering oral dose (200 mg/kg b.w.) for 21 days. Metformin (12.1 mg/kg b.w.) was used as a positive control. Blood samples of rats were drawn by tail vein puncture and cardiac puncture to determine the fasting blood glucose (FBG) and serum level of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), respectively. Standard protocols were followed to determine the antimicrobial and antibiofilm activities against two different strains of bacteria. Results: Oral administration of P. chaba RE for 21 days resulted in a significant (p< 0.001) decrease in FBG and TC, TG, and LDL levels (p<0.001), when compared to the untreated diabetic rats. Significant (p<0.001) increase of HDL was observed when ethyl acetate and aqueous RE were administered. Out of four, two extracts showed varying antimicrobial activities, particularly against the gram-positive bacteria.  Conclusion: It became evident for the first time that P. chaba extracts possess antimicrobial activities and can serve as biochemical compounds with great alternative therapeutic potential in the management of diabetes and hypercholesterolemia.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 882 ◽  
Author(s):  
Satish Anandan ◽  
Murali Mahadevamurthy ◽  
Mohammad Azam Ansari ◽  
Mohammad A. Alzohairy ◽  
Mohammad N. Alomary ◽  
...  

The development of advanced glycation end-products (AGEs) inhibitors is considered to have therapeutic potential in diabetic complications inhibiting the loss of the biomolecular function. In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized from aqueous leaf extract of Morus indica and were characterized by various techniques such as ultraviolet (UV)-Vis spectroscopy, Powder X-Ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Further, the inhibition of AGEs formation after exposure to ZnO-NPs was investigated by in-vitro, in-vivo, and molecular docking studies. Biochemical and histopathological changes after exposure to ZnO-NPs were also studied in streptozotocin-induced diabetic rats. ZnO-NPs showed an absorption peak at 359 nm with a purity of 92.62% and ~6–12 nm in size, which is characteristic of nanoparticles. The images of SEM showed agglomeration of smaller ZnO-NPs and EDS authenticating that the synthesized nanoparticles were without impurities. The biosynthesized ZnO-NPs showed significant inhibition in the formation of AGEs. The particles were effective against methylglyoxal (MGO) mediated glycation of bovine serum albumin (BSA) by inhibiting the formation of AGEs, which was dose-dependent. Further, the presence of MGO resulted in complete damage of biconcave red blood corpuscles (RBCs) to an irregular shape, whereas the morphological changes were prevented when they were treated with ZnO-NPs leading to the prevention of complications caused due to glycation. The administration of ZnO-NPs (100 mg Kg−1) in streptozotocin(STZ)-induced diabetic rats reversed hyperglycemia and significantly improved hepatic enzymes level and renal functionality, also the histopathological studies revealed restoration of kidney and liver damage nearer to normal conditions. Molecular docking of BSA with ZnO-NPs confirms that masking of lysine and arginine residues is one of the possible mechanisms responsible for the potent antiglycation activity of ZnO-NPs. The findings strongly suggest scope for exploring the therapeutic potential of diabetes-related complications.


Author(s):  
Ginpreet Kaur ◽  
Mihir Invally ◽  
Meena Chintamaneni

Abstract: Curcumin is a nutraceutical obtained from the rhizomes of: The present study was targeted to explore the antidiabetic potential of combinatorial extract of curcumin with piperine and quercetin (CPQ) in streptozotocin- and nicotinamide-induced diabetic rats. Diabetes mellitus was induced by single intraperitoneal injection of streptozotocin (55 mg/kg) and nicotinamide (120 mg/kg: Oral administration of CPQ at the dose of 100 mg kg: Treatment with combinatorial extract of curcumin presented a significantly better therapeutic potential when compared with curcumin alone, which reveals that CPQ, with reduced dose of curcumin may serve as a therapeutic agent in the treatment of type 2 diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document