scholarly journals RECYCLING LOCAL INDUSTRIAL WASTES FOR PRODUCTION OF GREEN CONSTRUCTION MATERIALS

2015 ◽  
Vol 1 (2015) ◽  
pp. 26-39
Author(s):  
Alaa El-Din Sharkawi
2018 ◽  
Vol 10 (9) ◽  
pp. 3136 ◽  
Author(s):  
Carla Costa ◽  
José Marques

Large-scale recycling of new industrial wastes or by-products in concrete has become a crucial issue for construction materials sustainability, with impact in the three pillars (environmental, social and economic), while still maintaining satisfactory, or improved, concrete performance. The main goal of the paper is to evaluate the technological feasibility of the partial, or total, replacement of fly-ashes (FA), widely used in ready-mixed concrete production, with spent equilibrium catalyst (ECat) from the oil-refinery industry. Three different concrete mixtures with binary binder blends of FA (33.3% by mass, used as reference) and of ECat (16.7% and 33.3%), as well as a concrete mixture with a ternary binder blend with FA and ECat (16.7%, of each) were tested regarding their mechanical properties and durability. Generically, in comparison with commercial concrete (i) 16.7% ECat binary blended concrete revealed improved mechanical strength and durability; (ii): ternary FA-ECat blended binder concrete presented similar properties; and (iii) 33% ECat binary blended concrete has a lower performance. The engineering performance of all ECat concretes meet both the international standards and the reference durability indicators available in the scientific literature. Thus, ECat can be a constant supply for ready-mixed eco-concretes production, promoting synergetic waste recycling across industries.


2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Konstantin Georgievich Pugin ◽  
Yakov Iosifovich Vaysman ◽  
Aleksandr Dmitrievich Potapov ◽  
Dmitriy Vladimirovich Oreshkin

2018 ◽  
Vol 10 (9) ◽  
pp. 3331 ◽  
Author(s):  
Hao Wang ◽  
Pen-Chi Chiang ◽  
Yanpeng Cai ◽  
Chunhui Li ◽  
Xuan Wang ◽  
...  

The construction materials utilized in the building sector have accounted for a large amount of natural resource and energy consumption. Green building, which has developed over three decades, can be regarded as a management and technical approach for building and construction sectors to achieve resource and energy sustainability in building sectors. Therefore, the development and deployment of green construction materials play an important role in the green building field due to the contribution of sustainable resources and energy. To realize the barriers of energy and resources utilization on green building, the development trend, application, and some case studies on wall materials and thermal insulation materials are described. A summary of plant fibers, recycled wastes, and photochromic glass is developed to show applications of green construction materials, which contributes to sustainable development. The challenges and barriers from business, technical, and policy aspects are also reviewed. Finally, perspectives and prospects of green construction material life-cycle framework are illustrated. This paper presents a snapshot review of the importance of wall materials and thermal insulation materials from the point of view of energy and resources consumption.


2020 ◽  
Vol 12 (15) ◽  
pp. 5987 ◽  
Author(s):  
Manfredi Saeli ◽  
Rosa Micale ◽  
Maria Paula Seabra ◽  
João A. Labrincha ◽  
Giada La Scalia

Construction is recognized as one of the most polluting and energy consuming industries worldwide, especially in developing countries. Therefore, Research and Development (R&D) of novel manufacturing technologies and green construction materials is becoming extremely compelling. This study aims at evaluating the reuse of various wastes, originated in the Kraft pulp-paper industry, as raw materials in the manufacture of novel geopolymeric (GP) mortars whose properties fundamentally depend on the target application (e.g., insulating panel, partition wall, structural element, furnishing, etc.). Five different wastes were reused as filler: Two typologies of Biomass Fly Ash, calcareous sludge, grits, and dregs. The produced samples were characterized and a multi criteria analysis, able to take into account not only the engineering properties, but also the environmental and economic aspects, has been implemented. The criteria weights were evaluated using the Delphi methodology. The fuzzy Topsis approach has been used to consider the intrinsic uncertainty related to unconventional materials, as the produced GP-mortars. The computational analysis showed that adding the considered industrial wastes as filler is strongly recommended to improve the performance of materials intended for structural applications in construction. The results revealed that the formulations containing 5 wt.% of calcareous sludge, grits, and dregs and the one containing 7.5 wt.% of calcareous sludge, grits, dregs, and Biomass Fly Ash-1 have emerged as the best alternatives. Furthermore, it resulted that the Biomass Fly Ash-2 negatively influences the structural performance and relative rank of the material. Finally, this case study clearly shows that the fuzzy Topsis multi-criteria analysis represents a valuable and easy tool to investigate construction materials (either traditional and unconventional) when an intrinsic uncertainty is related to the measurement of the quantitative and qualitative characteristics.


Author(s):  
Elena Zelinskaya ◽  
N.A. Tolmacheva ◽  
V.V. Barakhtenko ◽  
A.E. Burdonov ◽  
N.E. Garashchenko ◽  
...  

The article is devoted to the research into the utilization of large volume industrial wastes to produce mineral-polymer composite construction materials. To produce the composites, polyvinyl chloride wastes have been suggested as binding thermoplastic matrix and ash-and-slag wastes, which are the by-product of coal combustion at TPP of Irkutsk Oblast, as mineral filler. Since the problem of accumulation and storage, such as large volumes of power generation industry wastes is becoming more and more serious, the recycling of these wastes with the production of useful products is the vital task. Plants that manufacture products from PVC also produce plastic wastes in the form of rejected and substandard raw material, which can be recycled. At the same time, the problem of production available construction materials for the Baikal region from the local cheap raw material is solved. The team of Irkutsk National Research Technical University has conducted a number of the industrial trials on the production of mineral-polymer composites by the method of extrusion. As a result, the principal opportunity of co-utilization of PVC wastes and ash-and-slag materials during the production of composite construction materials has been testified. Local construction companies can use the produced materials.


2008 ◽  
Vol 587-588 ◽  
pp. 908-912 ◽  
Author(s):  
Rute Eires ◽  
Aires Camões ◽  
Saíd Jalali

The sustainable world’s economic growth and people’s life improvement greatly depend on the use of alternative products in the architecture and construction, such as industrial wastes conventionally called “green materials”. This paper concerns the main results of an experimental work carried out with the objective of developing new composite materials based on gypsum and incorporating waste material as granulated cork, a by-product of cork industry, and cellulose fibres, a waste of paper industry. Such materials are intended to be used as composite boards for non structural elements of construction, such as dry walls and ceiling. Cork (bark of the plant Quercus Suber L), a substance largely produced in Portugal, is a material whose characteristics are of considerable interest for the construction industry. It is regarded as a strategic material with enormous potential by its reduced density, elasticity, compressibility, waterproof, vibration absorption, thermal and acoustic insulation efficiency [1]. During the first stage of this research work the gypsum binder and its properties were studied. Then, composites with mineral additions (added to increase the waterproofing and resistance) were also developed and submitted to tests to determine their physical and mechanical properties. In last stage, reinforced composites using different industrial by-products have been developed. This paper will present the properties and the manufacture methods used to produce the above mentioned eco-friendly composites that can ease ways for using industrial wastes as new construction materials, with excellent inherent thermal and acoustic properties.


2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Marius Bodor ◽  
Rafael Santos ◽  
Tom Gerven ◽  
Maria Vlad

AbstractBesides producing a substantial portion of anthropogenic CO2 emissions, the industrial sector also generates significant quantities of solid residues. Mineral carbonation of alkaline wastes enables the combination of these two by-products, increasing the sustainability of industrial activities. On top of sequestering CO2 in geochemically stable form, mineral carbonation of waste materials also brings benefits such as stabilization of leaching, basicity and structural integrity, enabling further valorization of the residues, either via reduced waste treatment or landfilling costs, or via the production of marketable products. This paper reviews the current state-of-the-art of this technology and the latest developments in this field. Focus is given to the beneficial effects of mineral carbonation when applied to metallurgical slags, incineration ashes, mining tailings, asbestos containing materials, red mud, and oil shale processing residues. Efforts to intensify the carbonation reaction rate and improve the mineral conversion via process intensification routes, such as the application of ultrasound, hot-stage processing and integrated reactor technologies, are described. Valorization opportunities closest to making the transition from laboratory research to commercial reality, particularly in the form of shaped construction materials and precipitated calcium carbonate, are highlighted. Lastly, the context of mineral carbonation among the range of CCS options is discussed.


Sign in / Sign up

Export Citation Format

Share Document