Environmental Impacts of some Organic Extracts on Sugar Beet Yield under Saline-Sodic Soil Conditions

2017 ◽  
Vol 8 (12) ◽  
pp. 821-827
Author(s):  
Shreen Ahmed ◽  
Mona Abdel-Razek ◽  
Wafaa Hafez ◽  
Gehan Abd EL Aziz
2018 ◽  
pp. 639-647 ◽  
Author(s):  
Christa Hoffmann

Harvest quality of sugar beet varies according to soil conditions, harvester type and setting, and variety, too. Harvest quality may affect storage losses, in particular when injuries occur. To determine the harvest quality of commercial sugar beet and to quantify resulting storage losses, 92 commercial sugar beet clamps were sampled across Germany and information about harvest conditions were gathered. At IfZ, soil tare, leaf residues, topping diameter, root tip breakage and surface damage of the beets were determined. The beets were stored in 6 replicates in a climate container at 9°C for 10 weeks. The results demonstrate a rather good harvesting quality of sugar beet in Germany. Soil moisture at harvest did not affect harvest quality and storage losses. Very light, but also heavier soils lead to inferior harvest quality (soil tare, root tip breakage, damage) and slightly higher storage losses compared to the typical loam soils. Significant differences occurred between the three harvester types (companies). In general, high root tip breakage and severe surface damage of the beet was related to a high infestation with mould and rots, high invert sugar contents after storage and high sugar losses. Out of the five most planted varieties, in particular one turned out to be very susceptible to damage, resulting in high storage losses. The factor analysis suggests that the effect of harvester / harvester setting and of variety is more important for harvest quality and storage losses of sugar beet than soil conditions at harvest. Therefore, attention should be paid to optimize these conditions.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 480 ◽  
Author(s):  
Bushra Niamat ◽  
Muhammad Naveed ◽  
Zulfiqar Ahmad ◽  
Muhammad Yaseen ◽  
Allah Ditta ◽  
...  

Soil salinity and sodicity are among the main problems for optimum crop production in areas where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15, were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2. Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological, and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control. In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%, and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize under saline–sodic soil conditions constituting the novelty of this work.


1971 ◽  
Vol 77 (2) ◽  
pp. 247-252 ◽  
Author(s):  
Maurice Eddowes

SummaryRecent developments in chemical weed control in sugar beet have been reviewed. Two main approaches to the problem of providing reliable season-long control of annual weeds in sugar beet are, (a) the use of mixtures of herbicides applied pre-planting and incorporated into the soil during seed bed preparation, and (b) the use of split applications with a residual herbicide applied pre-emergence followed by a contact herbicide applied post-emergence.The second approach (b) was examined in a series of field experiments from 1967 to 1969, on light to medium sandy loam soils in the West Midlands. Comparisons were made between pre-emergence application of lenacil and pyrazon, pre-emergence application of lenacil and pyrazon followed by post-emergence application of phenmedipham, and post-emergence application of phenmedipham for weed control in sugar beet.Under dry soil conditions in April 1967, lenacil and pyrazon controlled only about 40% of the annual weeds, but in 1968 and 1969, when moist soil conditions predominated in April and May, lenacil and pyrazon controlled 80–95% of the annual weeds.Phenmedipham applied post-emergence gave about 90% control of annual broadleaved weeds initially, but it seemed unlikely that a single application of this herbicide would provide satisfactory weed control in sugar beet.In each of the 3 years 1967–9, a split application of a soil-acting residual herbicide (pro-emergence) followed by phenmedipham (post-emergence) gave outstanding weed control and enabled sugar beet to be established and grown until mid-June at least, in a near weed-free environment. It was concluded that this technique was the most effective for weed control in sugar beet on light to medium sandy loam soils in the West Midlands.


2019 ◽  
Vol 191 ◽  
pp. 131-141
Author(s):  
Miguel A. Gabarron-Galeote ◽  
Jacqueline A. Hannam ◽  
Thomas Mayr ◽  
Patrick J. Jarvis

1994 ◽  
Vol 21 (3) ◽  
pp. 236-241 ◽  
Author(s):  
Khalid Mahmood ◽  
Kauser A. Malik ◽  
M.A.K. Lodhi ◽  
Khalid Hamid Sheikh

An ecological survey of undisturbed saline wastelands and adjacent fields of Kallar Grass (Leptochloa fusca) was undertaken to study species distribution in relation to soil conditions and changes in species composition during amelioration processes. Five plant communities, represented by Atriplex crassifolia C.A. Mey., Cynodon dactylon (L.) Pers., Desmostachya bipinnata (L.) Stapf, Suaeda fruticosa (L.) Forssk., and Eleusine flagellifera Nees, had colonized undisturbed areas. Soils of plant communities dominated by these species showed significant variations in salinity and sodicity. S. fruticosa was dominant on highly saline–sodic soil, Cynodon on slightly saline and moderately sodic soil, whereas D. bipinnata showed little variation in cover percentage with changes in salinity and sodicity of soil. These three species had wide ecological amplitude compared with E. flagellifera and A. crassifolia, which were restricted to non-saline and marginally saline–sodic soils, respectively.


1972 ◽  
Vol 79 (3) ◽  
pp. 543-545 ◽  
Author(s):  
P. C. Longden

SUMMARYSeven soil conditioners added to a sandy clay soil at Saxmundham did not benefit sugar-beet seedling emergence in four experiments in 3 years. In microplots at Broom's Barn free draining peat and sandy loam gave consistently more seedlings than limestone loam or flinty loam. In the laboratory, for each of three soil types, emergence was maximal only for a small soil moisture range and decreased rapidly when soils became drier or wetter. This suggests that conditioners which increase water-holding capacity should be tested on sandy loams rather than clay soils and that seed-bed preparation on heavier soils should seek to aerate the soil.


Sign in / Sign up

Export Citation Format

Share Document