Soil–Plant Relationships in Saline Wastelands: Vegetation, Soils, and Successional Changes, During Biological Amelioration

1994 ◽  
Vol 21 (3) ◽  
pp. 236-241 ◽  
Author(s):  
Khalid Mahmood ◽  
Kauser A. Malik ◽  
M.A.K. Lodhi ◽  
Khalid Hamid Sheikh

An ecological survey of undisturbed saline wastelands and adjacent fields of Kallar Grass (Leptochloa fusca) was undertaken to study species distribution in relation to soil conditions and changes in species composition during amelioration processes. Five plant communities, represented by Atriplex crassifolia C.A. Mey., Cynodon dactylon (L.) Pers., Desmostachya bipinnata (L.) Stapf, Suaeda fruticosa (L.) Forssk., and Eleusine flagellifera Nees, had colonized undisturbed areas. Soils of plant communities dominated by these species showed significant variations in salinity and sodicity. S. fruticosa was dominant on highly saline–sodic soil, Cynodon on slightly saline and moderately sodic soil, whereas D. bipinnata showed little variation in cover percentage with changes in salinity and sodicity of soil. These three species had wide ecological amplitude compared with E. flagellifera and A. crassifolia, which were restricted to non-saline and marginally saline–sodic soils, respectively.

2004 ◽  
Vol 258 (1) ◽  
pp. 207-216 ◽  
Author(s):  
J. Akhter ◽  
R. Murray ◽  
K. Mahmood ◽  
K.A. Malik ◽  
S. Ahmed

2020 ◽  
Vol 55 (3) ◽  
pp. 225-240
Author(s):  
Helena Więcław ◽  
Marek Podlasiński

AbstractThe Carex flava aggregate belongs to one of the most taxonomically difficult groups of sedges which colonize diverse habitats, from organic to sandy, from acidic to alkaline, usually humid and moist. The study included 129 vegetation plots and ten soil variables (organic matter, phosphorus, potassium, magnesium, calcium, carbonates, carbon, nitrogen, pH, and the ratio between organic carbon and nitrogen). The main aim was to determine the relationships between the various plant communities C. flava agg. occur in and their soil properties. With the aid of the two-way indicator species analysis and cluster analysis, we delimited nine vegetation types from the Scheuchzerio palustris-Caricetea fuscae, Littorelletea uniflorae, Molinio-Arrhenatheretea and Alnetea glutinosae classes differing in their response to soil properties. The CCA revealed pH, N, K, C, CaCO3, P and Ca to be statistically significant, and to account for 11.55% of the total variance in species composition. The largest differences, both in terms of species composition and in soil conditions, were revealed between communities with C. lepidocarpa and C. demissa. Carex lepidocarpa occurred in calcareous and extremely rich fens (Caricion davallianae) whereas C. demissa was found to occur in poor and moderately rich fens (Sphagno-Caricion canescentis, Caricion canescenti-nigrae). Carex flava grew mostly in calcareous, rich fens and wet grasslands (Caricion davallianae, Calthion palustris). Carex viridula was found in both calcareous, extremely and moderately rich fens and wet grasslands, and in nutrient-poor habitats such as dunes and sandy lake shores. The ecological niche of C. viridula is very wide and this species showed no affinity to any specific syntaxon.


1992 ◽  
Vol 22 (5) ◽  
pp. 729-735 ◽  
Author(s):  
V.K. Garg ◽  
R.K. Jain

The persistent acute fuelwood shortage problem in India has necessitated having tree plantations on waste lands to obtain renewable energy. Fuelwood production screening trials initiated in 1981 at the Biomass Research Centre in Banthra, India (of the National Botanical Research Institute, Lucknow, India), identified babul, Acacianilotica (L.) Willd. ex Delile, and mesquite, Prosopisjuliflora (Swartz) DC, to be the most promising and suitable leguminous trees in terms of biomass production on sodic sites. A study was carried out to assess soil enrichment due to the growth of these fuelwood trees planted a decade past on sodic soil that had had no other amendments. Results showed preferential nutrient accumulation and greater reduction in soil pH (from 9.5 to 7.9) and exchangeable sodium (from 30 to 8%) at the P. juliflora plantation compared with at the A. nilotica plantation. There was also a reduction in surface soil (0–15 cm) bulk density, but an enhancement in porosity and water holding capacity, making soil more friable. The P. juliflora plantation produced markedly more leaf litter (6.1 t•ha−1•year−1) than the A. nilotica plantation (5.7 t•ha−1•year−1). Both the species had fibrous lateral root systems on the surface in the sodic soil. However, the penetration and spread of roots were almost 2-fold greater in P. juliflora than in A. nilotica. Thus, the potential magnitude of changes in soil properties was related to the distribution of roots and amount of litter falling on the soil surface. Prosopisjuliflora appeared to be better than A. nilotica under adverse sodic soil conditions in establishing an enlarged plant-litter nutrient cycle relationship. This study also provides an assessment of soil amelioration by leguminous trees under short-rotation forestry practices.


2003 ◽  
Vol 30 (2) ◽  
pp. 168-174 ◽  
Author(s):  
J. Akhter ◽  
K. Mahmood ◽  
K.A. Malik ◽  
S. Ahmed ◽  
R. Murray

Reclamation of saline lands seems difficult for climatic and economic reasons, but cultivation of salt-tolerant plants is an approach to increasing productivity and improvement of salt-affected wastelands. A five-year field study was conducted to evaluate the effects of growing a salt-tolerant species Leptochloa fusca (L.) Kunth (kallar grass) on chemical properties of a saline sodic soil irrigated with poor quality groundwater. Soil salinity, sodicity and pH decreased exponentially by growing kallar grass as a result of leaching of salts from surface (0–20 cm) to lower depths (>100 cm). Concentrations of soluble cations (Na+, K+, Ca2+ and Mg2+) and anions (Cl−, SO42− and HCO3−) were reduced through to greater soil depths. A significant decline in soil pH was attributed to release of CO2 by grass roots and solublization of CaCO3. Both soil salinity and soil pH were significantly correlated with Na+, Ca2+, Mg2+, K+, Cl−, HCO3− and sodium adsorption ratio (SAR). Significant correlations were found between soluble cations (Na+, Ca2+ and K+), soluble anions (Cl−, SO42− and HCO3−) and the SAR. In contrast, there were negative correlations between soil organic matter content and all chemical properties. The ameliorative effects on the soil chemical environment were pronounced after three years of growing kallar grass. Cultivation of kallar grass enhanced leaching and interactions among soil chemical properties and thus restored soil fertility. The soil maintained the improved characteristics with further growth of the grass up to five years suggesting that growing salt-tolerant plants is a sustainable approach to biological amelioration of saline wastelands.


2012 ◽  
pp. 66-77 ◽  
Author(s):  
I. A. Lavrinenko ◽  
O. V. Lavrinenko ◽  
D. V. Dobrynin

The satellite images show that the area of marshes in the Kolokolkova bay was notstable during the period from 1973 up to 2011. Until 2010 it varied from 357 to 636 ha. After a severe storm happened on July 24–25, 2010 the total area of marshes was reduced up to 43–50 ha. The mean value of NDVI for studied marshes, reflecting the green biomass, varied from 0.13 to 0.32 before the storm in 2010, after the storm the NDVI decreased to 0.10, in 2011 — 0.03. A comparative analysis of species composition and structure of plant communities described in 2002 and 2011, allowed to evaluate the vegetation changes of marshes of the different topographic levels. They are fol­lowing: a total destruction of plant communities of the ass. Puccinellietum phryganodis and ass. Caricetum subspathaceae on low and middle marches; increasing role of halophytic species in plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. typicum on middle marches; some changes in species composition and structure of plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. festucetosum rubrae on high marches and ass. Parnassio palustris–Salicetum reptantis in transition zone between marches and tundra without changes of their syntaxonomy; a death of moss cover in plant communities of the ass. Caricetum mackenziei var. Warnstorfia exannulata on brackish coastal bogs. The possible reasons of dramatic vegetation dynamics are discussed. The dating of the storm makes it possible to observe the directions and rates of the succession of marches vegetation.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 480 ◽  
Author(s):  
Bushra Niamat ◽  
Muhammad Naveed ◽  
Zulfiqar Ahmad ◽  
Muhammad Yaseen ◽  
Allah Ditta ◽  
...  

Soil salinity and sodicity are among the main problems for optimum crop production in areas where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15, were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2. Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological, and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control. In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%, and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize under saline–sodic soil conditions constituting the novelty of this work.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 552
Author(s):  
Janez Kermavnar ◽  
Lado Kutnar ◽  
Aleksander Marinšek

Forest herb-layer vegetation responds sensitively to environmental conditions. This paper compares drivers of both taxonomic, i.e., species richness, cover and evenness, and functional herb-layer diversity, i.e., the diversity of clonal, bud bank and leaf-height-seed plant traits. We investigated the dependence of herb-layer diversity on ecological determinants related to soil properties, climatic parameters, forest stand characteristics, and topographic and abiotic and biotic factors associated with forest floor structure. The study was conducted in different forest types in Slovenia, using vegetation and environmental data from 50 monitoring plots (400 m2 each) belonging to the ICP Forests Level I and II network. The main objective was to first identify significant ecological predictors and then quantify their relative importance. Species richness was strongly determined by forest stand characteristics, such as richness of the shrub layer, tree layer shade-casting ability as a proxy for light availability and tree species composition. It showed a clear positive relation to soil pH. Variation in herb-layer cover was also best explained by forest stand characteristics and, to a lesser extent, by structural factors such as moss cover. Species evenness was associated with tree species composition, shrub layer cover and soil pH. Various ecological determinants were decisive for the diversity of below-ground traits, i.e., clonal and bud bank traits. For these two trait groups we observed a substantial climatic signal that was completely absent for taxonomy-based measures of diversity. In contrast, above-ground leaf-height-seed (LHS) traits were driven exclusively by soil reaction and nitrogen availability. In synthesis, local stand characteristics and soil properties acted as the main controlling factors for both species and trait diversity in herb-layer communities across Slovenia, confirming many previous studies. Our findings suggest that the taxonomic and functional facets of herb-layer vegetation are mainly influenced by a similar set of ecological determinants. However, their relative importance varies among individual taxonomy- and functional trait-based diversity measures. Integrating multi-faceted approaches can provide complementary information on patterns of herb-layer diversity in European forest plant communities.


2015 ◽  
Vol 7 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Monier Abd EL-GHANI ◽  
Reinhard BORNKAMM ◽  
Nadia EL-SAWAF ◽  
Hamdiya TURKY

The relationship between vegetation and soil supporting the habitats in 4 new industrial cities were assessed. Five main habitats were distinguished from inner city toward outskirts: lawns, home gardens, public gardens, waste lands and desert outskirts. After application of Twinspan, 26 vegetation groups were identified in the 5 recognized habitats, demonstrating that some groups are chatracteristic of a certain city, e.g. Asphodelus aestivus - Deverra tortuosa - Thymelaea hirsuta group was confined to the desert habitat of Burg El-Arab city; Thymelaea hirsuta - Linaria albifrons and Atriplex halimus - Atriplex lindleyi subsp. inflata - Suaeda vermiculata - Typha domingensis groups were found in the waste lands of Burg El-Arab city; Conyza bonariensis - Cynodon dactylon - Sonchus oleraceus group in the home garden habitat of 10th Ranadan city; Cynodon dactylon group in the lawns of Burg El-Arab city; Bassia indica - Plantago major group in the public gardens of Burg El-Arab city; Oxalis corniculata - Plantago lagopus group in the public gardens of 10th Ramadan city; Sonchus oleraceus - Cynodon dactylon and Dactyloctenium aegyptium - Leptochloa fusca - Phragmites australis groups in the public gardens of 6th October city. Silt, clay, organic matter, carbonates and carbon contents showed significant diffrences among the 5 habitats.


Biologia ◽  
2017 ◽  
Vol 72 (7) ◽  
Author(s):  
Mária Petrášová-Šibíková ◽  
Igor Matečný ◽  
Eva Uherčíková ◽  
Peter Pišút ◽  
Silvia Kubalová ◽  
...  

AbstractHuman alteration of watercourses is global phenomenon that has had significant impacts on local ecosystems and the services they provide. Monitoring of abiotic and biotic changes is essential to mitigating long-lasting effects, and the 23-year dataset from the Gabčíkovo Waterworks provided a rare opportunity to assess the impact of groundwater regimes on vegetation. The main aim of this study was to describe the effect of the Gabčíkovo Waterworks on vegetation structure and species composition of the adjacent riparian floodplain forests over the past 23 years. The results are based on studies of three permanent monitoring plots (PMPs) located in the Danube inland delta – two outside (PMP 1 and 3) and one (PMP 2) fully under the influence of the artificial supply system. Our results demonstrate that the Danube inland delta was negatively affected by the Gabčíkovo construction, particularly for sites outside of the artificial supply system. There was a significant decrease in soil moisture and increase in nitrogen at both external PMPs (1 and 3). Alter soil conditions were accompanied by negative changes in plant species composition demonstrated by decreases in the number of typical floodplain forest species that are characteristic for the alliance


Sign in / Sign up

Export Citation Format

Share Document