scholarly journals Analyzing Depthwise Convolution Based Neural Network: Study Case in Ship Detection and Land Cover Classification

2019 ◽  
Vol 12 (2) ◽  
pp. 103
Author(s):  
Kuntoro Adi Nugroho ◽  
Yudi Eko Windarto

Various methods are available to perform feature extraction on satellite images. Among the available alternatives, deep convolutional neural network (ConvNet) is the state of the art method. Although previous studies have reported successful attempts on developing and implementing ConvNet on remote sensing application, several issues are not well explored, such as the use of depthwise convolution, final pooling layer size, and comparison between grayscale and RGB settings. The objective of this study is to perform analysis to address these issues. Two feature learning algorithms were proposed, namely ConvNet as the current state of the art for satellite image classification and Gray Level Co-occurence Matrix (GLCM) which represents a classic unsupervised feature extraction method. The experiment demonstrated consistent result with previous studies that ConvNet is superior in most cases compared to GLCM, especially with 3x3xn final pooling. The performance of the learning algorithms are much higher on features from RGB channels, except for ConvNet with relatively small number of features.

Electronics ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 20 ◽  
Author(s):  
Caleb Vununu ◽  
Suk-Hwan Lee ◽  
Ki-Ryong Kwon

The automated and accurate classification of the images portraying the Human Epithelial cells of type 2 (HEp-2) represents one of the most important steps in the diagnosis procedure of many autoimmune diseases. The extreme intra-class variations of the HEp-2 cell images datasets drastically complicates the classification task. We propose in this work a classification framework that, unlike most of the state-of-the-art methods, uses a deep learning-based feature extraction method in a strictly unsupervised way. We propose a deep learning-based hybrid feature learning with two levels of deep convolutional autoencoders. The first level takes the original cell images as the inputs and learns to reconstruct them, in order to capture the features related to the global shape of the cells, and the second network takes the gradients of the images, in order to encode the localized changes in intensity (gray variations) that characterize each cell type. A final feature vector is constructed by combining the latent representations extracted from the two networks, giving a highly discriminative feature representation. The created features will be fed to a nonlinear classifier whose output will represent the type of the cell image. We have tested the discriminability of the proposed features on two of the most popular HEp-2 cell classification datasets, the SNPHEp-2 and ICPR 2016 datasets. The results show that the proposed features manage to capture the distinctive characteristics of the different cell types while performing at least as well as the actual deep learning-based state-of-the-art methods in terms of discrimination.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiang Lin ◽  
Yi Yumei ◽  
Zhang Maosheng ◽  
Chen Defeng ◽  
Wang Chao ◽  
...  

In speaker recognition systems, feature extraction is a challenging task under environment noise conditions. To improve the robustness of the feature, we proposed a multiscale chaotic feature for speaker recognition. We use a multiresolution analysis technique to capture more finer information on different speakers in the frequency domain. Then, we extracted the speech chaotic characteristics based on the nonlinear dynamic model, which helps to improve the discrimination of features. Finally, we use a GMM-UBM model to develop a speaker recognition system. Our experimental results verified its good performance. Under clean speech and noise speech conditions, the ERR value of our method is reduced by 13.94% and 26.5% compared with the state-of-the-art method, respectively.


Author(s):  
Esteban Real ◽  
Alok Aggarwal ◽  
Yanping Huang ◽  
Quoc V. Le

The effort devoted to hand-crafting neural network image classifiers has motivated the use of architecture search to discover them automatically. Although evolutionary algorithms have been repeatedly applied to neural network topologies, the image classifiers thus discovered have remained inferior to human-crafted ones. Here, we evolve an image classifier— AmoebaNet-A—that surpasses hand-designs for the first time. To do this, we modify the tournament selection evolutionary algorithm by introducing an age property to favor the younger genotypes. Matching size, AmoebaNet-A has comparable accuracy to current state-of-the-art ImageNet models discovered with more complex architecture-search methods. Scaled to larger size, AmoebaNet-A sets a new state-of-theart 83.9% top-1 / 96.6% top-5 ImageNet accuracy. In a controlled comparison against a well known reinforcement learning algorithm, we give evidence that evolution can obtain results faster with the same hardware, especially at the earlier stages of the search. This is relevant when fewer compute resources are available. Evolution is, thus, a simple method to effectively discover high-quality architectures.


Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 98 ◽  
Author(s):  
Tariq Ahmad ◽  
Allan Ramsay ◽  
Hanady Ahmed

Assigning sentiment labels to documents is, at first sight, a standard multi-label classification task. Many approaches have been used for this task, but the current state-of-the-art solutions use deep neural networks (DNNs). As such, it seems likely that standard machine learning algorithms, such as these, will provide an effective approach. We describe an alternative approach, involving the use of probabilities to construct a weighted lexicon of sentiment terms, then modifying the lexicon and calculating optimal thresholds for each class. We show that this approach outperforms the use of DNNs and other standard algorithms. We believe that DNNs are not a universal panacea and that paying attention to the nature of the data that you are trying to learn from can be more important than trying out ever more powerful general purpose machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document