NEWEST TECTONICS OF THE VISTULA SPIT AREA

Author(s):  
Nikolay Dunaev ◽  
Nikolay Dunaev ◽  
Nadezhda Politova ◽  
Nadezhda Politova

The interests of forecasting of the area’s development simulate to take more attention to the study of its newest tectonics. The most informative tectonic pattern for the studies of coastal zones is neotectonic one, based on the structural principle, which shows the newly formed and inherited dislocations, reflected in the modern landscape and exodynamics of the earth's surface. The question of the manifestations of newest tectonics by way on the example of the Vistula Spit (Baltic Sea) is discussed.

Author(s):  
Nikolay Dunaev ◽  
Nikolay Dunaev ◽  
Nadezhda Politova ◽  
Nadezhda Politova

The interests of forecasting of the area’s development simulate to take more attention to the study of its newest tectonics. The most informative tectonic pattern for the studies of coastal zones is neotectonic one, based on the structural principle, which shows the newly formed and inherited dislocations, reflected in the modern landscape and exodynamics of the earth's surface. The question of the manifestations of newest tectonics by way on the example of the Vistula Spit (Baltic Sea) is discussed.


2005 ◽  
Vol 29 (1) ◽  
pp. 517-520
Author(s):  
U. Schiewer ◽  
T. Rieling ◽  
P. Feuerpfeil ◽  
S. Estrum-Yousef ◽  
J. Dehmlow ◽  
...  

Author(s):  
Андрей Клемешев ◽  
Andrey Klemeshev ◽  
Геннадий Федоров ◽  
Gennady Fedorov ◽  
Татьяна Кузнецова ◽  
...  

The study attempts to understand the phenomenon of cross-border cluster formation in the specific context of the coastal zones of Russia in the Baltic sea, to assess the impact of modern global geopolitical and geo-economic trends, including the processes of European and Eurasian integration. The priority characterizes the formation of cross-border clusters in the Russian coastal regions in the Baltic sea, analyzes the tools, problems and promising algorithms for the implementation of the cluster policy of the state, taking into account the specifics of the coastal zones.


Author(s):  
Elizabeth Weidner ◽  
Christian Stranne ◽  
Jonas Hentati Sundberg ◽  
Thomas C Weber ◽  
Larry Mayer ◽  
...  

Abstract Anoxic zones, regions of the water column completely devoid of dissolved oxygen, occur in open oceans and coastal zones worldwide. The Baltic Sea is characterized by strong salinity-driven stratification, maintained by occasional water inflows from the Danish Straights and freshwater input from rivers. Between inflow events, the stratification interface between surface and deep waters hinders mixing and ventilation of deep water; consequently, the bottom waters of large regions of the Baltic are anoxic. The onset of the anoxic zone is closely coincident with the depth of the halocline and, as a result, the interface between oxic and anoxic waters corresponds to a strong impedance contrast. Here, we track acoustic scattering from the impedance contrast utilizing a broadband split-beam echosounder in the Western Gotland Basin and link it to a dissolved oxygen level of 2 ml/l using ground truth stations. The broadband acoustic dataset provides the means to remotely observe the spatiotemporal variations in the oxic–anoxic interface, map out the extent of the anoxic zone with high resolution, and identify several mechanisms influencing the vertical distribution of oxygen in the water column. The method described here can be used to study other systems with applications in ongoing oceanographic monitoring programs.


2020 ◽  
Author(s):  
Felix Gross ◽  
Kilian Etter ◽  
Philipp Held ◽  
Jens Schneider von Deimling

<p>Seagrass meadows are crucial habitats since they serve as fish nurseries and food sources for many marine species. They prevent nearshore erosion and are an important CO<sub>2</sub> sink. As the plants are bound to the photic zone, seagrass meadows normally populate the shallow coastal zones. Unmanned aerial vehicles (UAV) are gaining popularity within the earth sciences community. Most surveys are of terrestrial nature and carried out by using the camera of the UAV to obtain orthophotos and three-dimensional surface models of a survey area. In comparison to space-borne systems, UAVs are capable of higher resolution image quality and time independent measurements, which enables an event-based surveying approach. We here present a submarine habitat mapping study, obtained by using an UAV flying 75 m above the water surface. Within the frame of the BONUS ECOMAP project, we aim to conduct repeated UAV surveys over the seasonal cycle to observe changes within coastal seagrass bed habitats. The key study area is located in the Baltic Sea offshore Heidkate (near Kiel, Germany). For data acquisition, we are using a commercial DJI Inspire 2 UAV with a gimbal mounted 20.8 megapixel Zenmuse X5S camera with a 15 mm/ 1.7 ASPH lens. For less reflection and distortion at the air-water interface, we are using a B&W circular polarized filter. Ground control points are measured and leveled with a Leica RTK system, which has a lateral resolution of ~2 cm. We process the data with the commercial software Pix4D™ and Agisoft PhotoScan™ to compute orthomosaic images and digital elevation/surface models. Since February 2018, we were able to conduct repeated surveys offshore Heidkate and Wendtorf (Germany). The average resolution of the orthomosaic data is better than 5 cm/px. First results show that we can obtain high-resolution images of habitats within water depths less than ~4 m in the Baltic Sea. Penetration is limited to factors like wave action, suspended sediment load and angle of the solar radiation. We perform supervised classification and pattern detection for habitat identification and discrimination. The data show the presence of seagrass, algae but also rocks, which are exposed at the seafloor. All scenes show a seasonal variability of the extent of seagrass meadows which are affected by migrating sand bars and major storm events. These data are the basis for a long-term monitoring framework, we are currently establishing in the working area.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1679
Author(s):  
Tomasz Wolski ◽  
Bernard Wiśniewski

Understanding the characteristics of storm surges is especially important in the context of ongoing climate changes, which often lead to catastrophic events in the coastal zones of seas and oceans. For this reason, this paper presents the characteristics of the Baltic Sea storm surges and trends in their occurrences through the past 60 years. The study material was based on hourly sea level readings, spanning the years 1961–2020, retrieved from 45 Baltic Sea tide gauges, as well as air pressure and wind field data. Owing to the analysis and visualization of storm situations, two main types of storm surges were identified and characterized: a surge driven by wind and a surge driven by subpressure associated with an active low pressure area. This paper also discusses a third, mixed type of storm surge. Further analyses have indicated that through the past 60 years in the Baltic Sea, the duration of high sea level has increased by 1/3, the average number of storm surges has increased from 3.1 to 5.5 per year, and the maximum annual sea levels have increased—with a trend value of 0.28 cm/year. These processes, also observed in other marine basins, provide strong evidence for contemporary climate change.


Author(s):  
Markus Franz ◽  
Gitta Ann von Rönn ◽  
Francisco Rafael Barboza ◽  
Rolf Karez ◽  
Hans-Christian Reimers ◽  
...  

AbstractEnvironmental factors shape the structure and functioning of benthic communities. In coastal zones of the southwestern Baltic Sea, boulder fields represent one of the most productive habitats, supporting diverse benthic communities that provide many ecosystem services. In this study, the influence of the geological characteristics of boulder fields on the biodiversity of associated hard-bottom communities was investigated at two different spatial scales (few kilometers and tens of kilometers). The analyses on overall richness (taxonomic and functional) and community composition revealed how: (i) locally the size of boulders and (ii) regionally site-specific factors like the boulder density distribution and the sediment distribution can act as environmental driving forces. The overall richness of assemblages was shown to increase with increasing surface area of boulders, by up to 60% for species and up to 40% for functional richness. At both investigated scales, differences in compositional variability (β diversity) of the communities were detected. Locally, smallest boulders hosted more variable communities (β diversity up to 2 times higher), while at the regional level, indications of a larger habitat heterogeneity featuring the highest β diversity were observed. This study exemplifies how geological habitat characteristics shape the biodiversity of boulder field communities. The obtained information could be considered in assessment strategies, in order to avoid misclassifications of habitats naturally limited in biodiversity, making a step forward to the desired objective of protecting, conserving, and managing boulder field communities in the study area and at other comparable sites.


2019 ◽  
Vol 19 (21) ◽  
pp. 13469-13487 ◽  
Author(s):  
Jan Eiof Jonson ◽  
Michael Gauss ◽  
Jukka-Pekka Jalkanen ◽  
Lasse Johansson

Abstract. Emissions of most land-based air pollutants in western Europe have decreased in the last decades. Over the same period emissions from shipping have also decreased, but with large differences depending on species and sea area. At sea, sulfur emissions in the SECAs (Sulphur Emission Control Areas) have decreased following the implementation of a 0.1 % limit on sulfur in marine fuels from 2015. In Europe the North Sea and the Baltic Sea are designated as SECAs by the International Maritime Organisation (IMO). Model calculations assuming present (2016) and future (2030) emissions have been made with the regional-scale EMEP model covering Europe and the sea areas surrounding Europe, including the North Atlantic east of 30∘ W. The main focus in this paper is on the effects of ship emissions from the Baltic Sea. To reduce the influence of meteorological variability, all model calculations are presented as averages for 3 meteorological years (2014, 2015, 2016). For the Baltic Sea, model calculations have also been made with higher sulfur emissions representative of year 2014 emissions. From Baltic Sea shipping the largest effects are calculated for NO2 in air, accounting for more than 50 % of the NO2 concentrations in central parts of the Baltic Sea. In coastal zones contributions to NO2 and also nitrogen depositions can be of the order of 20 % in some regions. Smaller effects, up to 5 %–10 %, are also seen for PM2.5 in coastal zones close to the main shipping lanes. Country-averaged contributions from ships are small for large countries that extend far inland like Germany and Poland, and larger for smaller countries like Denmark and the Baltic states Estonia, Latvia, and Lithuania, where ship emissions are among the largest contributors to concentrations and depositions of anthropogenic origin. Following the implementations of stricter SECA regulations, sulfur emissions from Baltic Sea shipping now have virtually no effects on PM2.5 concentrations and sulfur depositions in the Baltic Sea region. Adding to the expected reductions in air pollutants and depositions following the projected reductions in European emissions, we expect that the contributions from Baltic Sea shipping to NO2 and PM2.5 concentrations, and to depositions of nitrogen, will be reduced by 40 %–50 % from 2016 to 2030 mainly as a result of the Baltic Sea being defined as a Nitrogen Emission Control Area from 2021. In most parts of the Baltic Sea region ozone levels are expected to decrease from 2016 to 2030. For the Baltic Sea shipping, titration, mainly in winter, and production, mainly in summer, partially compensate. As a result the effects of Baltic Sea shipping on ozone are similar in 2016 and 2030.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 164
Author(s):  
Irma Vybernaite-Lubiene ◽  
Mindaugas Zilius ◽  
Marco Bartoli ◽  
Jolita Petkuviene ◽  
Petras Zemlys ◽  
...  

Estuaries are biogeochemical reactors able to modulate the transfer of energy and matter from the watershed to the coastal zones and to retain or remove large amounts of terrestrially generated nutrients. However, they may switch from nutrient sink to source depending upon interannual variability of the nutrient supply and internal processes driving whole system metabolism (e.g., net autotrophic or heterotrophic). We tested this hypothesis in the Curonian Lagoon, a hypertrophic estuary located in the south east Baltic Sea, following the budget approach developed in the Land-Ocean Interactions in the Coastal Zone (LOICZ) project. Annual budgets for nitrogen (N), phosphorus (P), and silica (Si) were calculated for the 2013–2015 period. The lagoon was divided in a flushed, nutrient loaded area, and in a confined, less loaded area. The lagoon was always a sink for dissolved inorganic Si and P whereas it was a N sink in the confined area, dominated by denitrification, and a N source in the flushed area, due to dinitrogen (N2) fixation. The net ecosystem metabolism (NEM) indicated that the Curonian Lagoon was mainly autotrophic because of high primary production rates. In this turbid system, low N:P ratio, high summer temperatures, and calm weather conditions support high production of N2-fixing cyanobacteria, suppressing the estuarine N-sink role.


Sign in / Sign up

Export Citation Format

Share Document