scholarly journals Strategic opportunities for economic development of the Baltic Sea coastal zones and sea industrial and port complexes

Baltic Region ◽  
2012 ◽  
pp. 72-80 ◽  
Author(s):  
G. G. Gogoberidze ◽  
M. A. Mamaeva
Author(s):  
Андрей Клемешев ◽  
Andrey Klemeshev ◽  
Геннадий Федоров ◽  
Gennady Fedorov ◽  
Татьяна Кузнецова ◽  
...  

The study attempts to understand the phenomenon of cross-border cluster formation in the specific context of the coastal zones of Russia in the Baltic sea, to assess the impact of modern global geopolitical and geo-economic trends, including the processes of European and Eurasian integration. The priority characterizes the formation of cross-border clusters in the Russian coastal regions in the Baltic sea, analyzes the tools, problems and promising algorithms for the implementation of the cluster policy of the state, taking into account the specifics of the coastal zones.


Baltic Region ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 7-26
Author(s):  
Goran Roos ◽  
Natalia Ye. Kubina ◽  
Yulia Yu. Farafonova

The article explores opportunities for the sustainable economic development of coastal territories in the Baltic Sea region (BSR) arising in blue economy sectors in the framework of digital transformation. The study argues that more active commercialisation of territorial resources can facilitate the sustainable economic development of the BSR coastal territories, following digitally-driven innovations. The paper provides an overview of methodological approaches to territorial sustainability. It also assesses the 2009—2018 level of the socio-economic development of the BSR coastal territories, underpins the importance of the blue economy and highlights the role of digital transformation in reaching the UN Sustainable Development Goals (SDGs) in the BSR through digitally-driven innovations. A comparative and problem-targeted statistics analyses show significant differences in the dynamics of socio-economic development in the BSR coastal territories with their GRP per capita being generally lower than the national or macroregional average. A review of literature on sustainable development in the BSR has shown that a more active use of the unique resources of coastal territories along with a technology-driven growth of the blue economy sectors can counterbalance the negative impact of the uneven development of these territories on the progress towards the SDGs in the BSR. Increasing the competitiveness of the BSR coastal territories requires investment in digital solutions in the blue economy sectors and building communication infrastructure. The review of key innovations in the blue economy sectors shows that their implementation gives impetus to other industries by reducing costs, creating new jobs, and improving the quality of products and services.


Author(s):  
Elizabeth Weidner ◽  
Christian Stranne ◽  
Jonas Hentati Sundberg ◽  
Thomas C Weber ◽  
Larry Mayer ◽  
...  

Abstract Anoxic zones, regions of the water column completely devoid of dissolved oxygen, occur in open oceans and coastal zones worldwide. The Baltic Sea is characterized by strong salinity-driven stratification, maintained by occasional water inflows from the Danish Straights and freshwater input from rivers. Between inflow events, the stratification interface between surface and deep waters hinders mixing and ventilation of deep water; consequently, the bottom waters of large regions of the Baltic are anoxic. The onset of the anoxic zone is closely coincident with the depth of the halocline and, as a result, the interface between oxic and anoxic waters corresponds to a strong impedance contrast. Here, we track acoustic scattering from the impedance contrast utilizing a broadband split-beam echosounder in the Western Gotland Basin and link it to a dissolved oxygen level of 2 ml/l using ground truth stations. The broadband acoustic dataset provides the means to remotely observe the spatiotemporal variations in the oxic–anoxic interface, map out the extent of the anoxic zone with high resolution, and identify several mechanisms influencing the vertical distribution of oxygen in the water column. The method described here can be used to study other systems with applications in ongoing oceanographic monitoring programs.


2020 ◽  
Author(s):  
Felix Gross ◽  
Kilian Etter ◽  
Philipp Held ◽  
Jens Schneider von Deimling

<p>Seagrass meadows are crucial habitats since they serve as fish nurseries and food sources for many marine species. They prevent nearshore erosion and are an important CO<sub>2</sub> sink. As the plants are bound to the photic zone, seagrass meadows normally populate the shallow coastal zones. Unmanned aerial vehicles (UAV) are gaining popularity within the earth sciences community. Most surveys are of terrestrial nature and carried out by using the camera of the UAV to obtain orthophotos and three-dimensional surface models of a survey area. In comparison to space-borne systems, UAVs are capable of higher resolution image quality and time independent measurements, which enables an event-based surveying approach. We here present a submarine habitat mapping study, obtained by using an UAV flying 75 m above the water surface. Within the frame of the BONUS ECOMAP project, we aim to conduct repeated UAV surveys over the seasonal cycle to observe changes within coastal seagrass bed habitats. The key study area is located in the Baltic Sea offshore Heidkate (near Kiel, Germany). For data acquisition, we are using a commercial DJI Inspire 2 UAV with a gimbal mounted 20.8 megapixel Zenmuse X5S camera with a 15 mm/ 1.7 ASPH lens. For less reflection and distortion at the air-water interface, we are using a B&W circular polarized filter. Ground control points are measured and leveled with a Leica RTK system, which has a lateral resolution of ~2 cm. We process the data with the commercial software Pix4D™ and Agisoft PhotoScan™ to compute orthomosaic images and digital elevation/surface models. Since February 2018, we were able to conduct repeated surveys offshore Heidkate and Wendtorf (Germany). The average resolution of the orthomosaic data is better than 5 cm/px. First results show that we can obtain high-resolution images of habitats within water depths less than ~4 m in the Baltic Sea. Penetration is limited to factors like wave action, suspended sediment load and angle of the solar radiation. We perform supervised classification and pattern detection for habitat identification and discrimination. The data show the presence of seagrass, algae but also rocks, which are exposed at the seafloor. All scenes show a seasonal variability of the extent of seagrass meadows which are affected by migrating sand bars and major storm events. These data are the basis for a long-term monitoring framework, we are currently establishing in the working area.</p>


2019 ◽  
Vol 84 ◽  
pp. 19-28
Author(s):  
Aleksandra Gus-Puszczewicz

Each region of Poland has a potential that should be used for economic development. The primary advantages of the Pomeranian Voivodeship include coastal location, positioning at the mouth of the Vistula River to the Gulf of Gdańsk, possessing high density of inland waterways and diversity of landscape. The area has favourable conditions for the development of, among others, ports and tourism. There are two seaports in the Pomeranian Voivodeship in Gdańsk and Gdynia. The Port of Gdansk is one of the largest ports on the Baltic Sea and the largest in Poland. The tourism sector is also dynamically advancing in the voivodeship, increasingly making use of the natural potential of the region by offering various types of sports and recreational activities. The aim of this article is to assess the condition of, and to identify, selected factors of economic development which determine the revitalization of inland waterways in the Pomeranian Voivodeship.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1679
Author(s):  
Tomasz Wolski ◽  
Bernard Wiśniewski

Understanding the characteristics of storm surges is especially important in the context of ongoing climate changes, which often lead to catastrophic events in the coastal zones of seas and oceans. For this reason, this paper presents the characteristics of the Baltic Sea storm surges and trends in their occurrences through the past 60 years. The study material was based on hourly sea level readings, spanning the years 1961–2020, retrieved from 45 Baltic Sea tide gauges, as well as air pressure and wind field data. Owing to the analysis and visualization of storm situations, two main types of storm surges were identified and characterized: a surge driven by wind and a surge driven by subpressure associated with an active low pressure area. This paper also discusses a third, mixed type of storm surge. Further analyses have indicated that through the past 60 years in the Baltic Sea, the duration of high sea level has increased by 1/3, the average number of storm surges has increased from 3.1 to 5.5 per year, and the maximum annual sea levels have increased—with a trend value of 0.28 cm/year. These processes, also observed in other marine basins, provide strong evidence for contemporary climate change.


2019 ◽  
Vol 19 (21) ◽  
pp. 13469-13487 ◽  
Author(s):  
Jan Eiof Jonson ◽  
Michael Gauss ◽  
Jukka-Pekka Jalkanen ◽  
Lasse Johansson

Abstract. Emissions of most land-based air pollutants in western Europe have decreased in the last decades. Over the same period emissions from shipping have also decreased, but with large differences depending on species and sea area. At sea, sulfur emissions in the SECAs (Sulphur Emission Control Areas) have decreased following the implementation of a 0.1 % limit on sulfur in marine fuels from 2015. In Europe the North Sea and the Baltic Sea are designated as SECAs by the International Maritime Organisation (IMO). Model calculations assuming present (2016) and future (2030) emissions have been made with the regional-scale EMEP model covering Europe and the sea areas surrounding Europe, including the North Atlantic east of 30∘ W. The main focus in this paper is on the effects of ship emissions from the Baltic Sea. To reduce the influence of meteorological variability, all model calculations are presented as averages for 3 meteorological years (2014, 2015, 2016). For the Baltic Sea, model calculations have also been made with higher sulfur emissions representative of year 2014 emissions. From Baltic Sea shipping the largest effects are calculated for NO2 in air, accounting for more than 50 % of the NO2 concentrations in central parts of the Baltic Sea. In coastal zones contributions to NO2 and also nitrogen depositions can be of the order of 20 % in some regions. Smaller effects, up to 5 %–10 %, are also seen for PM2.5 in coastal zones close to the main shipping lanes. Country-averaged contributions from ships are small for large countries that extend far inland like Germany and Poland, and larger for smaller countries like Denmark and the Baltic states Estonia, Latvia, and Lithuania, where ship emissions are among the largest contributors to concentrations and depositions of anthropogenic origin. Following the implementations of stricter SECA regulations, sulfur emissions from Baltic Sea shipping now have virtually no effects on PM2.5 concentrations and sulfur depositions in the Baltic Sea region. Adding to the expected reductions in air pollutants and depositions following the projected reductions in European emissions, we expect that the contributions from Baltic Sea shipping to NO2 and PM2.5 concentrations, and to depositions of nitrogen, will be reduced by 40 %–50 % from 2016 to 2030 mainly as a result of the Baltic Sea being defined as a Nitrogen Emission Control Area from 2021. In most parts of the Baltic Sea region ozone levels are expected to decrease from 2016 to 2030. For the Baltic Sea shipping, titration, mainly in winter, and production, mainly in summer, partially compensate. As a result the effects of Baltic Sea shipping on ozone are similar in 2016 and 2030.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 552 ◽  
Author(s):  
Yuanying Chen ◽  
Guillaume Vigouroux ◽  
Arvid Bring ◽  
Vladimir Cvetkovic ◽  
Georgia Destouni

For the large-scale coastal wetland system of the Baltic Sea, this study develops a methodology for investigating if and to what degree the variability and changes in certain hydro-climatic drivers control key coastal–marine physical conditions. The studied physical conditions include: (a) water temperature, (b) water salinity, and (c) flow structures (magnitudes and directions of flows between marine basins and the associated coastal zones and wetlands). We use numerical simulations of three hydro-climatically distinct cases to investigate the variations in hydro-climatic drivers and the resulting physical conditions (a–c) among the cases. The studied hydro-climatic forcing variables are: net surface heat flux, wind conditions, saltwater influx from the North Sea, and freshwater runoff from land. For these variables, the available observation-based data show that the total runoff from land is significantly and positively correlated with precipitation on the sea itself, and negatively correlated with saltwater influx from the North Sea to the Baltic Sea. Overall, the physical condition (a–c) variability in the Baltic Sea and its coastal zones is found to be pairwise well-explained by simulation case differences as follows: (a) Net heat flux is a main control of sea water temperature. (b) Runoff from land, along with the correlated salt water influx from the North Sea, controls average sea salinity; with the variability of local river discharges shifting some coastal zones to deviate from the average sea condition. (c) Wind variability and change control the Baltic Sea flow structure, primarily in terms of flow magnitude and less so in terms of flow direction. For specific coastal wetland zones, considerable salinity differences from average Baltic Sea conditions (due to variability in local river discharges) are found for the coasts of Finland and Estonia, while the coastal wetland zones of south-eastern Sweden, and of Estonia and Latvia, emerge as particularly sensitive to wind shifts.


Sign in / Sign up

Export Citation Format

Share Document