Water quality of rooftop rainwater harvesting systems: a review

2006 ◽  
Vol 55 (4) ◽  
pp. 257-268 ◽  
Author(s):  
V. Meera ◽  
M. Mansoor Ahammed
2015 ◽  
Vol 16 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Ju Young Lee ◽  
Hyoungju Kim ◽  
Mooyoung Han

In this study, the quality of collected rainwater at a downtown middle school rainwater harvesting system was evaluated by measuring physical, chemical, and microbiological parameters such as pH, dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), NO3, PO4, total coliform (TC), Escherichia coli , and some metals (i.e. Al, Cr, Mn, Zn, Cu, As, Cd, and Pb) (2003 to 2011). The analysis shows that the collected water quality is poor, which presents health, considering the high levels of bacterial indicators detected in the harvested rainwater, i.e. turbidity (1.4 to 15.5 NTU) and E. coli (120 and 35 CFU/100 mL in 2007 to 210 and 60 CFU/100 mL in 2011). This study shows that deteriorating water quality was caused by system contamination due to the absence of maintenance. Based on this study, proper operation and maintenance are generally the simplest and most effective ways of maintaining water quality.


2014 ◽  
Vol 955-959 ◽  
pp. 3522-3528
Author(s):  
Jian Feng Zhang ◽  
Ya Xiong Deng ◽  
Zhan Qin Lei ◽  
Wei Xie

In the past two decade, the Chinese government has paid a huge effort to solve the problem of drinking water in remote rural. As an alterative success case, rainwater harvesting and utility has been the most efficient way to supplying fresh water in rural areas of the Loess Plateau, a typical water resources serious shortage area in China. Focused on improving the quality of the rural village cistern water, study about the characteristics of ion release from building materials during runoff process with five representative materials used for rainwater collection: concrete, red brick, grey tile, red tile and soil was conducted. The ion releasing process and following effect on cistern water quality index, such as hardness, pH, conductivity, has been analyzed. Results revealed that the most release strength of different materials was arriving at 30s following startup. Furthermore, the test of effects of rain acidity on ion release procession showed that the total ion release increased with storm water pH declining, however, the release strength was irrelevance with runoff’s pH. Based on research results, a detailed suggestion was provided to renovate intake construction of cistern for improving the drinking water quality in remote rural areas of Weibei Semi-arid District.


2014 ◽  
Vol 15 (1) ◽  
pp. 134-141 ◽  
Author(s):  
J. P. Kohlitz ◽  
M. D. Smith

Health risks from drinking rainwater are relatively small in the developing world context, but action is needed to ensure water safety. Water safety plans (WSPs) use an approach to manage water quality that has shown signs of success with public and communal water supplies, but relatively little research has been done to investigate the application of WSPs to self-supply systems. The aim of this paper is to investigate the primary issues surrounding appropriate water quality management of domestic rainwater harvesting (DRWH) systems in Fiji and consider how the principles of WSPs can be applied in this context. A qualitative research design was followed, utilising semi-structured interviews with 34 rural households and six key informants, sanitary inspections of DRWH systems and thematic data analysis. A number of challenges, including limited government resources and the limited knowledge and casual attitudes of rural rainwater consumers, constrain the practicality of adopting conventional WSPs at the household level, but steps for improvement can be taken.


2016 ◽  
Vol 17 (2) ◽  
pp. 452-460 ◽  
Author(s):  
Yonghwan Kim ◽  
Anh Dzung Dao ◽  
Mikyeong Kim ◽  
Viet-Anh Nguyen ◽  
Mooyoung Han

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2130
Author(s):  
Ehsan Ranaee ◽  
Ali Akbar Abbasi ◽  
Javad Tabatabaee Yazdi ◽  
Maryam Ziyaee

Recent developments of Middle Eastern metropolitans, and the related soaring trend of population increase, is contemporary with the impacts of climate changes. This applies extra pressures to the centralized large-scale water treatment and distribution systems. Rainwater harvesting (RWH) for domestic urban activities can be a sustainable option of adapting with the rising demand of soft water in such an arid/semiarid area. A pilot system of rainwater draining and storage was constructed for alleviating parts of soft water scarcity in Mashhad, the second most populous city of Iran. Measurements were collected for two years at the drainage basin outlet and inside of a storage tank, which has been equipped for water harvesting purposes. We performed some preliminary stochastic analysis and evaluated probabilistic properties of the collected dataset, aiming to explain them with respect to the physical characteristics of the RWH system. Data clustering analysis confirmed that the quality of the water may change during rainwater draining and storage in the RWH tank. Particularly, sodium content of the sampled water in the drainage catchment illustrated higher variations, compared with the ones evaluated for the stored water in the reservoir tank. This can confirm that the quality of the stored water in the RWH reservoir is more stable than that obtained for each separate rainfall–runoff event. We assessed the potential of the harvested water in different consumption contexts, in light of some national and international water quality (physicochemical, biological, and toxic pollutants) guidelines. We relied on water quality indices (WQI) to interpret multiparametric properties of the collected rainwater from urban surfaces; consequently, the quality of the harvested water was categorized with moderate to almost good attributes. This makes it well suited for irrigation uses, which can play a relevant role against water shortages in the analyzed semiarid urban region. Otherwise, infiltration and treatments need to be performed if using harvested water for drinking consumptions (of human or livestock), some of which may be costly for local owners/uses. We provide some suggestions for improving efficiency of the system and enhancing the quality of the harvesting water.


2021 ◽  
Vol 880 (1) ◽  
pp. 012039
Author(s):  
N U M Nizam ◽  
M M Hanafiah ◽  
M B Mokhtar ◽  
N A Jalal

Abstract Prolonged drought, population growth and water demand for various purposes have increased the water scarcity issue. To overcome this issue, a rainwater harvesting system can be utilized as an alternative for clean water supply. A rainwater harvesting system is a method of collecting rainwater from man-made surfaces such as rooftops and constructed surfaces and can be used for various sectors including household, agricultural and commercial. This study was conducted to determine the quality of rainwater harvested collected directly from rooftop. The quality of the rooftop rainwater was taken in three consecutive months and the water quality for before and after treatment was measured and compared. Commercial activated carbon was used to treat the rainwater obtained from the rooftop. The water quality was compared with the Water Quality Index (WQI) and the National Water Quality Standards (NWQS). The parameters involved are pH, temperature, conductivity, dissolved oxygen (DO), total suspended solids (TSS), ammoniacal nitrogen (NH3-N), biochemical oxygen demand (BOD), chemical oxygen demand (COD),E.coli and total coliform bacteria. The results showed that the total value of WQI before and after treatment was 86.3 ± 8.963 and 87.6±2.081, respectively. Positive correlations were found for parameter NH3-N, COD and pH, while paired T-test showed a significant in the COD and the presence of bacteria. Total Coliform is still at a safe level by NWQS with the average value and the standard deviation for before and after treatment were 38.11 ± 13.960 cfu/ml and 10.33 ± 6.671 cfu/ml, respectively.


2011 ◽  
Vol 695 ◽  
pp. 93-96
Author(s):  
Ree Ho Kim ◽  
Jung Hun Lee ◽  
Sang Ho Lee ◽  
Hana Kim

Pollutants in rainwater often cause problems such as non-point source pollutant and deterioration of collected water quality in rainwater harvesting systems. Fiber filter media have been developed to resolve these problems by removing pollutants in rainwater by filtration and ion-exchange mechanisms. They have been also successfully applied for the treatment of first-flush rainwater. However, little information is available on the long-term efficiency and the lifetime of the fiber filter media. In this study, new and used fiber filter media were compared in terms of their filterability and ion-exchange capability. The used filter media samples were taken from a first flush filter in a rainwater harvesting system located in an elementary school in Kyonggi-Do. They were used from 2005 to 2010 without any replacement or cleaning. Water quality parameters of an inflow and outflow in the first flush filter were analyzed to quantify the on-site treatment efficiency of the used media. It was shown that the turbidity was removed by approximately 60% and COD was partly removed. The removal efficiency of particles by the used media was similar to that by the new media. Nevertheless, the removal efficiencies of nitrogen and phosphorous by the used media were substantially reduced when compared with the new media. This suggests that the fiber filter media should be periodically replaced to maintain high removals of nutrients. On the other hand, they can be used for more than 6 years if their primary purpose is to removal particles.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3163
Author(s):  
Husnna Aishah Zabidi ◽  
Hui Weng Goh ◽  
Chun Kiat Chang ◽  
Ngai Weng Chan ◽  
Nor Azazi Zakaria

Rapid urbanization, population explosion and climate change have threatened water security globally, regionally and locally. While there are many ways of addressing these problems, one of the innovative techniques is the recent employment of Sustainable Urban Drainage Systems (SUDS) which include rainwater harvesting systems (RWHS). Therefore, this paper reviews the design and component of two types of RWHS, the namely roof harvesting system (RHS) and the pond harvesting system (PHS). The performance in terms of quantity and quality of collected rainwater and energy consumption for RWHS with different capacities were evaluated, as well as the benefits and challenges particularly in environmental, economic and social aspects. Presently, the RHS is more commonly applied but its effectiveness is limited by its small scale. The PHS is of larger scale and has greater potentials and effectiveness as an alternative water supply system. Results also indicate the many advantages of the PHS especially in terms of economics, environmental aspects and volume of water harvested. While the RHS may be suited to individual or existing buildings, the PHS has greater potentials and should be applied in newly developed urban areas with wet equatorial climate.


2018 ◽  
Vol 204 ◽  
pp. 03016
Author(s):  
Anie Yulistyorini ◽  
Gilang Idfi ◽  
Evy Dwi Fahmi

This study aimed to investigate the quality of the rooftop rainwater harvesting (RRWH) and to treat it for clean water supply alternative of Graha Rektorat building at State University of Malang, Indonesia. Different combinations of zeolite and activated carbon were used as filter media to treat the RRWH. Several parameters have tested to investigate the quality of RRWH based on Permenkes RI No. 416 / MENKES / PER / IX / 1990. Most of the quality of the RRWH met clean water and drinking water standard. However, there were three parameters have to be reduced and required further treatment. The results showed T4 reduced TDS and coliform bacteria by 37% and 36%, while T5 eliminated organic substances (KMnO4) for 35%.


Sign in / Sign up

Export Citation Format

Share Document