scholarly journals Removal of low-concentration phosphorus by efficient phosphorus removal composite-based ecological floating beds

2019 ◽  
Vol 68 (8) ◽  
pp. 782-792 ◽  
Author(s):  
Yan Liu ◽  
Juanjuan Lv ◽  
Rajendra Prasad Singh

Abstract In order to strengthen the effect of ecological floating beds on the removal of low-concentration phosphorus (P) in water, the efficient P removal composite (EPRC), which is a high-efficiency P removal material developed in the current work as the substrate for the Ipomoea aquatica floating beds, was introduced into the solar chamber. The EPRC dosage (2g/L) and the optimal number of Ipomoea aquatica plants (6 plants/10 L) suitable for the floating beds were determined experimentally. Results revealed that EPRC and Ipomoea aquatica composite floating beds had the best P removal effect among the three floating beds. Moreover, the root growth ratio of Ipomoea aquatica in the composite floating bed and the plant-only floating bed was 1.90 and 1.25, respectively. The stem growth ratio of Ipomoea aquatica in the composite floating bed and plant-only floating beds was 1.54 and 1.21, respectively. The leaching experiments showed that the leaching of heavy metals from the EPRC was negligible.

Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2017 ◽  
Vol 1 ◽  
pp. 264
Author(s):  
Md Didarul Islam ◽  
Ashiqur Rahaman ◽  
Fahmida Jannat

This study was based on to determine the concentration of macro and micro nutrients as well as toxic and nontoxic heavy metals present in the chicken feed available in Dhaka city of Bangladesh. All macro nutrients, if present in the feed at high concentration have some adverse effect, at the same time if this nutrient present in the feed at low concentration this have some adverse effect too. So that this nutrient level should be maintained at a marginal level. On the other side toxic heavy metals if present in the feed at very low concentration those can contaminate the total environment of the ecosystem. In this study six brand samples (starter, grower, finisher and layer) which was collected from different renowned chicken feed formulation industry in Bangladesh. Those samples were prepared for analysis by wet ashing and then metals were determined by Atomic Absorption Spectroscopy. It was found that 27.7 to 68.4, 57.3 to 121.9, 0.21 to 4.1, 0.32 to 2.1, 0.11 to 1.58, 0.28 to 2.11 and 0.28 to 1.78 for zinc, iron, copper, mercury, cadmium, nickel and cobalt respectively. It was found that essential macro and micro nutrients were present in the feed in low concentration on the other side mercury was present in high concentration in the feed samples.


1994 ◽  
Vol 29 (7) ◽  
pp. 153-156 ◽  
Author(s):  
D. Wedi ◽  
P. A. Wilderer

Most of the fundamental processes responsible for enhanced biological phosphorus removal (EBPR) were obtained through laboratory tests under defined conditions with pure or enriched cultures. Acinetobacter sp. was identified as the most important group of bacteria responsible for bio-P removal. Full scale data showed, however, that laboratory results do not match full scale results well enough. There is a lack of data on the effects of sub-optimal process conditions such as inadequate availability of volatile fatty acids (VFA), high nitrate recycle, storm water inflow or low temperatures. In this paper the results of full scale experiments on P-release are presented and compared with theoretical values. Measurements at a full scale Phoredox-system showed a surprisingly low P-release in the anaerobic reactor. Only 4 to 10% of the phosphorus in the activated sludge was released in the bulk liquid. With laboratory batch-tests, a maximum of 20% of the P in the sludge could be released. It is assumed that under the prevailing process conditions either the fraction of Acinetobacter sp. was very small, or bacteria other than Acinetobacter sp. were responsible for the P-removal, or most of the phosphorus was bound chemically but mediated by biological processes.


2003 ◽  
Vol 48 (1) ◽  
pp. 87-94 ◽  
Author(s):  
B. Lesjean ◽  
R. Gnirss ◽  
C. Adam ◽  
M. Kraume ◽  
F. Luck

The enhanced biological phosphorus removal (EBPR) process was adapted to membrane bioreactor (MBR) technology. One bench-scale plant (BSP, 200-250 L) and two pilot plants (PPs, 1,000-3,000 L each) were operated under several configurations, including pre-denitrification and post-denitrification without addition of carbon source, and two solid retention times (SRT) of 15 and 26 d. The trials showed that efficient Bio-P removal can be achieved with MBR systems, in both pre- and post-denitrification configurations. EBPR dynamics could be clearly demonstrated through batch-tests, on-line measurements, profile analyses, P-spiking trials, and mass balances. High P-removal performances were achieved even with high SRT of 26 d, as around 9 mgP/L could be reliably removed. After stabilisation, the sludge exhibited phosphorus contents of around 2.4%TS. When spiked with phosphorus (no P-limitation), P-content could increase up to 6%TS. The sludge is therefore well suited to agricultural reuse with important fertilising values. Theoretical calculations showed that increased sludge age should result in a greater P-content. This could not be clearly demonstrated by the trials. This effect should be all the more significant as the influent is low in suspended solids.


2013 ◽  
Vol 779-780 ◽  
pp. 1674-1677 ◽  
Author(s):  
Dan Lian Huang ◽  
Guang Ming Zeng ◽  
Piao Xu ◽  
Cui Lai ◽  
Mei Hua Zhao ◽  
...  

Immobilized microbe technologies are expected to be effectively used in wastewater treatment. Removal of heavy-metals from wastewater by immobilized Phanerochaete chrysosporium (Pc) with Ca-alginate and iron oxide magnetic nanoparticles (MNPs) was studied. The results showed that a biosorbent as Pc immobilized by Ca-alginate and iron oxide magnetic nanoparticles was successfully developed. And the iron oxide magnetic nanoparticles played an important role in the increase of biosorption capacity of Pc. Energy dispersive spectrometer (EDS) analysis confirmed that metal ions adsorbed to the surface of the biosorbents were partly transmitted to the interior of biosorbents, mainly embedded with iron oxide nanoparticles and Ca-alginate. Moreover, it was found that MNPs-Ca-alginate immobilized Pc showed a good affinity to various heavy metals, such as Pb(II), Zn(II), Cd(II) or Mg(II) and so on. The results proved the high efficiency of the biosorbents for heavy-metal removal and its potential application in the treatment of metal-containing wastewater.


2005 ◽  
Vol 28 (11) ◽  
pp. 651-655
Author(s):  
Satoshi TSUNEDA ◽  
Toshiro SAKAI ◽  
Hiroshi HAYASHI

1983 ◽  
Vol 15 (3-4) ◽  
pp. 127-152 ◽  
Author(s):  
I P Siebritz ◽  
G A Ekama ◽  
G v R Marais

Biological excess phosphorus removal in nitrification-denitrification single sludge activated sludge processes is shown to be stimulated by having a concentration of rapidly biodegradable COD (Sbsa) ≧25 mg/ℓ in the anaerobic reactor; the magnitude of the P removal is determined by a P removal propensity factor (Pf) defined by the product of (Sbsa−25) and the fractional mass of sludge in the anaerobic reactor. Sbsa is rapidly depleted by nitrate entering the anaerobic reactor; in the Phoredox process treating municipal waste flows if the TKN/COD ratio of the influent is greater than about 0,08 mgN/mgCOD the process, if designed to ensure efficient nitrification, is unlikely to remove all the nitrate and nitrate is recycled to the anaerobic reactor whereupon P removal declines. A new process is proposed that protects the anaerobic reactor from the nitrate in the effluent; tests indicate that this process can give excess P removal for TKN/COD ratios up to 0,14 mgN/mgCOD.


2010 ◽  
Vol 29 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Hee-Jung Kim ◽  
Ri-Bi Yoo ◽  
Seok-Soon Han ◽  
Sun-Hee Woo ◽  
Moon-Soon Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document