Application of Immobilized Fungi Phanerochaete chrysosporium in Removal of Heavy-Metals from Wastewater

2013 ◽  
Vol 779-780 ◽  
pp. 1674-1677 ◽  
Author(s):  
Dan Lian Huang ◽  
Guang Ming Zeng ◽  
Piao Xu ◽  
Cui Lai ◽  
Mei Hua Zhao ◽  
...  

Immobilized microbe technologies are expected to be effectively used in wastewater treatment. Removal of heavy-metals from wastewater by immobilized Phanerochaete chrysosporium (Pc) with Ca-alginate and iron oxide magnetic nanoparticles (MNPs) was studied. The results showed that a biosorbent as Pc immobilized by Ca-alginate and iron oxide magnetic nanoparticles was successfully developed. And the iron oxide magnetic nanoparticles played an important role in the increase of biosorption capacity of Pc. Energy dispersive spectrometer (EDS) analysis confirmed that metal ions adsorbed to the surface of the biosorbents were partly transmitted to the interior of biosorbents, mainly embedded with iron oxide nanoparticles and Ca-alginate. Moreover, it was found that MNPs-Ca-alginate immobilized Pc showed a good affinity to various heavy metals, such as Pb(II), Zn(II), Cd(II) or Mg(II) and so on. The results proved the high efficiency of the biosorbents for heavy-metal removal and its potential application in the treatment of metal-containing wastewater.

2016 ◽  
Vol 73 (12) ◽  
pp. 2921-2928 ◽  
Author(s):  
Marla C. Maniquiz-Redillas ◽  
Lee-Hyung Kim

Abstract In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.


2001 ◽  
Vol 44 (10) ◽  
pp. 53-58 ◽  
Author(s):  
L. C. Aralp ◽  
A. Erdincler ◽  
T. T. Onay

Heavy metal concentration in sludge is one of the major obstacles for the application of sludge on land. There are various methods for the removal of heavy metals in sludge. Using sulfur oxidizing bacteria for microbiological removal of heavy metals from sludges is an outstanding option because of high metal solubilization rates and the low cost. In this study, bioleaching by indigenous sulfur oxidizing bacteria was applied to sludges generated from the co-treatment of municipal wastewater and leachate for the removal of selected heavy metals. Sulfur oxidizing bacteria were acclimated to activated sludge. The effect of the high organic content of leachate on the bioleaching process was investigated in four sets of sludges having different concentrations of leachate. Sludges in Sets A, B, C and D were obtained from co-treatment of wastewater and 3%, 5%, 7% and 10% (v/v) leachate respectively. The highest Cr, Ni and Fe solubilization was obtained from Set A. Sulfur oxidizing bacteria were totally inhibited in Set D that received the highest volume of leachate.


1986 ◽  
Vol 18 (1) ◽  
pp. 19-29 ◽  
Author(s):  
I. Licskó ◽  
I. Takács

It has been established in laboratory model experiments that the removal of dissolved heavyimetals from wastewaters is rendered more difficult in the presence of colloid-stabilizing agents. This unfavourable effect can be eliminated by the addition of Mg2+ ions and the adjustment to a fairly high pH. By increasing the concentration of Mg2+ ions, the pH necessary for destroying the stability of colloidal dispersion can be lowered. These findings also apply to the combined removal of different heavy metals (Cu, Zn, Cr(III), Ni, Cd). In alkaline conditions, in the presence of ammonium salts, some heavy metals (Cu, Zn, Ni) form high stability amine complexes. A higher pH is necessary for the breakdown of these complexes and the satisfactory removal of heavy metals.


2016 ◽  
Vol 7 (4) ◽  
pp. 387-419 ◽  
Author(s):  
Renu ◽  
Madhu Agarwal ◽  
K. Singh

Heavy metals are discharged into water from various industries. They can be toxic or carcinogenic in nature and can cause severe problems for humans and aquatic ecosystems. Thus, the removal of heavy metals from wastewater is a serious problem. The adsorption process is widely used for the removal of heavy metals from wastewater because of its low cost, availability and eco-friendly nature. Both commercial adsorbents and bioadsorbents are used for the removal of heavy metals from wastewater, with high removal capacity. This review article aims to compile scattered information on the different adsorbents that are used for heavy metal removal and to provide information on the commercially available and natural bioadsorbents used for removal of chromium, cadmium and copper, in particular.


2021 ◽  
Author(s):  
Athar Hussain ◽  
Sangeeta Madan ◽  
Richa Madan

Adsorption processes are extensively used in wastewater treatment for heavy metal removal. The most widely used adsorbent is activated carbon giving the best of results but it’s high cost limits its use. It has a high cost of production and regeneration. As the world today faces a shortage of freshwater resources, it is inevitable to look for alternatives that lessen the burden on existing resources. Also, heavy metals are toxic even in trace concentrations, so an environmentally safe method of their removal necessitated the requirement of low cost adsorbents. Adsorption is a cost-effective technique and gained recognition due to its minimum waste disposal advantage. This chapter focuses on the process of adsorption and the types of adsorbent available today. It also encompasses the low-cost adsorbents ranging from agricultural waste to industrial waste explaining the adsorption reaction condition. The cost-effectiveness, technical applicability and easy availability of raw material with low negative impact on the system are the precursors in selecting the adsorbents. The novelty of the chapter lies in covering a wide range of adsorbents with their efficiency in removal of heavy metals from wastewater.


RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 29885-29907 ◽  
Author(s):  
Phoebe Zito Ray ◽  
Heather J. Shipley

Schematic of inorganic adsorbents (INA) for heavy metal removal.


Author(s):  
Tehseen Yaseen ◽  
Anum Yaseen

Nanotechnology is the area of nano science that shows great potential to establish a new process for wastewater treatment. It has been applied on a nanometer scale level. Currently, limited water resources and real treatment of wastewater is a chief requirement for the growing economy. It is in great demand to introduce the progressive wastewater treatment technologies. Therefore, the modern innovative processes in nanomaterial sciences have been appealing the target of scientists. The chapter addresses the developments in nanotechnology with respect to wastewater treatment, especially the removal of heavy metals and to the environmental applications. It will discuss the application of different classes of nanomaterials for wastewater treatment in removal of heavy metals and its possible effects to the environment. Therefore, the scope is to offer an overview of how nanomaterials are causing concerns related to heavy metal removal for water and in the surrounding environment.


2020 ◽  
Author(s):  
Maribel Guzman ◽  
Maggy Romero ◽  
Michael Flores ◽  
Sebastian Bravo

Abstract One of the greatest environmental issues related to the development of the mining activity is the generation of Acid Mine Drainage (AMD). This effluent generated by active and abandoned mines in Peru produces multiple discussions about the role of the industry for a sustainable development. Many methods have been developed for AMD treatment, being wetlands a good option for heavy metal removal. In this sense, removal of heavy metal by using laboratory constructed wetlands with Phragmites Australis was studied. During a 9-day period the variation of different physicochemical parameters and heavy metals concentrations was recorded. The pH decreased to a constant value of 8.24 after the sixth day. The electrical conductivity presented a slight variation from 1 to 1.33 µS cm-1 on the ninth day. Moreover, fluctuating values of Dissolved Oxygen and Turbidity were observed. A reduction between 69% and 93% of ammonia nitrogen (NH3-N) was registered. Cu concentration was reduced in 68% and 87%; Zn concentrations dropped in 53% and 95%; and Pb was reduced in 20% and 55%. It was concluded that Phragmites Australis can be an alternative in the treatment of the contaminants produced by AMD.


2013 ◽  
Vol 68 (3) ◽  
pp. 674-680 ◽  
Author(s):  
M. J. Norris ◽  
I. D. Pulford ◽  
H. Haynes ◽  
C. C. Dorea ◽  
V. R. Phoenix

Sustainable urban Drainage Systems (SuDS) filter drains are simple, low-cost systems utilized as a first defence to treat road runoff by employing biogeochemical processes to reduce pollutants. However, the mechanisms involved in pollution attenuation are poorly understood. This work aims to develop a better understanding of these mechanisms to facilitate improved SuDS design. Since heavy metals are a large fraction of pollution in road runoff, this study aimed to enhance heavy metal removal of filter drain gravel with an iron oxide mineral amendment to increase surface area for heavy metal scavenging. Experiments showed that amendment-coated and uncoated (control) gravel removed similar quantities of heavy metals. Moreover, when normalized to surface area, iron oxide coated gravels (IOCGs) showed poorer metal removal capacities than uncoated gravel. Inspection of the uncoated microgabbro gravel indicated that clay particulates on the surface (a natural product of weathering of this material) augmented heavy metal removal, generating metal sequestration capacities that were competitive compared with IOCGs. Furthermore, when the weathered surface was scrubbed and removed, metal removal capacities were reduced by 20%. When compared with other lithologies, adsorption of heavy metals by microgabbro was 10–70% higher, indicating that both the lithology of the gravel, and the presence of a weathered surface, considerably influence its ability to immobilize heavy metals. These results contradict previous assumptions which suggest that gravel lithology is not a significant factor in SuDS design. Based upon these results, weathered microgabbro is suggested to be an ideal lithology for use in SuDS.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3336
Author(s):  
Tomasz Kamizela ◽  
Anna Grobelak ◽  
Malgorzata Worwag

Among the methods used to remove metals and their compounds from landfill leachates with low application costs and high efficiency are bioleaching and biosorption. The most effective bacteria used in the metal removal process are Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The aim of the study was to determine the usefulness of the A. ferrooxidans and A. thiooxidans population in removing heavy metals from landfill leachate. In addition, development opportunities for bacterial population using landfill leachate as growth medium were identified. The substrate for the research was the raw leachate before the reverse osmosis process. In order to increase the efficiency of trace elements removal and recovery from leachate, variable combinations have been used which differ by the addition of sulfuric acid, A. ferrooxidans culture, A. thiooxidans culture, mixed culture containing populations of both bacteria, and elemental sulfur. Based on the research, it was found that the removal of heavy metals from leachate was a selective process. High bioleaching efficiency, from 80% to 90%, was obtained for all metals for which the sample acidification or sulfur addition was used. The simultaneous combination of both these additives turned out to be the most advantageous. The A. thiooxidans culture was the most effective in bioleaching reverse osmosis effluents. For the A. ferrooxidans culture used, much lower efficiencies were obtained, while by contrast, the use of mixed culture of two bacterium species had no significant effect.


Sign in / Sign up

Export Citation Format

Share Document