scholarly journals Improving flood forecasting in Bangladesh using an artificial neural network

2009 ◽  
Vol 12 (3) ◽  
pp. 351-364 ◽  
Author(s):  
A. S. Islam

A river stage neural network model has been developed to study and predict the water level of Dhaka city. A total of five stations located at the border area of Bangladesh on the Ganges, Brahmaputra and Meghna rivers are selected as input nodes and Dhaka on the Buriganga river is the output node for the neural network. This model is trained with river stage data for a period of 1998 to 2004 and validated with data from 2005 to 2007. The river stage of Dhaka has been predicted for up to ten days with very high accuracy. Values of R2, root mean square and mean absolute error are found ranging from 0.537 to 0.968, 0.607 m to 0.206 m and 0.475 m to 0.154 m, respectively, during training and validation of the model. The results of this study can be useful for real-time flood forecasting by reducing computational time, improving water resources management and reducing the unnecessary cost of field data collection.

2021 ◽  
Vol 11 (9) ◽  
pp. 4243
Author(s):  
Chieh-Yuan Tsai ◽  
Yi-Fan Chiu ◽  
Yu-Jen Chen

Nowadays, recommendation systems have been successfully adopted in variant online services such as e-commerce, news, and social media. The recommenders provide users a convenient and efficient way to find their exciting items and increase service providers’ revenue. However, it is found that many recommenders suffered from the cold start (CS) problem where only a small number of ratings are available for some new items. To conquer the difficulties, this research proposes a two-stage neural network-based CS item recommendation system. The proposed system includes two major components, which are the denoising autoencoder (DAE)-based CS item rating (DACR) generator and the neural network-based collaborative filtering (NNCF) predictor. In the DACR generator, a textual description of an item is used as auxiliary content information to represent the item. Then, the DAE is applied to extract the content features from high-dimensional textual vectors. With the compact content features, a CS item’s rating can be efficiently derived based on the ratings of similar non-CS items. Second, the NNCF predictor is developed to predict the ratings in the sparse user–item matrix. In the predictor, both spare binary user and item vectors are projected to dense latent vectors in the embedding layer. Next, latent vectors are fed into multilayer perceptron (MLP) layers for user–item matrix learning. Finally, appropriate item suggestions can be accurately obtained. The extensive experiments show that the DAE can significantly reduce the computational time for item similarity evaluations while keeping the original features’ characteristics. Besides, the experiments show that the proposed NNCF predictor outperforms several popular recommendation algorithms. We also demonstrate that the proposed CS item recommender can achieve up to 8% MAE improvement compared to adding no CS item rating.


2021 ◽  
Vol 12 (4) ◽  
pp. 178
Author(s):  
Gilles Van Van Kriekinge ◽  
Cedric De De Cauwer ◽  
Nikolaos Sapountzoglou ◽  
Thierry Coosemans ◽  
Maarten Messagie

The increasing penetration rate of electric vehicles, associated with a growing charging demand, could induce a negative impact on the electric grid, such as higher peak power demand. To support the electric grid, and to anticipate those peaks, a growing interest exists for forecasting the day-ahead charging demand of electric vehicles. This paper proposes the enhancement of a state-of-the-art deep neural network to forecast the day-ahead charging demand of electric vehicles with a time resolution of 15 min. In particular, new features have been added on the neural network in order to improve the forecasting. The forecaster is applied on an important use case of a local charging site of a hospital. The results show that the mean-absolute error (MAE) and root-mean-square error (RMSE) are respectively reduced by 28.8% and 19.22% thanks to the use of calendar and weather features. The main achievement of this research is the possibility to forecast a high stochastic aggregated EV charging demand on a day-ahead horizon with a MAE lower than 1 kW.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fereshteh Mataeimoghadam ◽  
M. A. Hakim Newton ◽  
Abdollah Dehzangi ◽  
Abdul Karim ◽  
B. Jayaram ◽  
...  

Abstract Protein structure prediction is a grand challenge. Prediction of protein structures via the representations using backbone dihedral angles has recently achieved significant progress along with the on-going surge of deep neural network (DNN) research in general. However, we observe that in the protein backbone angle prediction research, there is an overall trend to employ more and more complex neural networks and then to throw more and more features to the neural networks. While more features might add more predictive power to the neural network, we argue that redundant features could rather clutter the scenario and more complex neural networks then just could counterbalance the noise. From artificial intelligence and machine learning perspectives, problem representations and solution approaches do mutually interact and thus affect performance. We also argue that comparatively simpler predictors can more easily be reconstructed than the more complex ones. With these arguments in mind, we present a deep learning method named Simpler Angle Predictor (SAP) to train simpler DNN models that enhance protein backbone angle prediction. We then empirically show that SAP can significantly outperform existing state-of-the-art methods on well-known benchmark datasets: for some types of angles, the differences are 6–8 in terms of mean absolute error (MAE). The SAP program along with its data is available from the website https://gitlab.com/mahnewton/sap.


2011 ◽  
Vol 402 ◽  
pp. 476-479
Author(s):  
Wei Wang ◽  
Zhi Hui Xu ◽  
Long Long Yang ◽  
Zheng Liang Xue ◽  
Dong Nan Zhao ◽  
...  

Micum strength is an important indicator of quality of sinter; BP artificial neural network model is built to predict the strength of sinter drum. The neural network use the main factors that influence the sinter drum as input data, and output is Micum strength. Experiment results shows that the maximum absolute error between the Micum strength predicted by neural network and real value from the sinter plant is 0.3346, and the average absolute error is 0.1154. These prove that the prediction is accuracy. In addition, because of the "black box" characteristic of the neural network model, the neural network model can not give the law of how the various factors affect the micum strength of sinter ore, this paper also uses the model to analysis the law of how TFe, SiO2 content affect the micum strength. The results not only consist with the sintering theory, but also verify the validity of the model.


2011 ◽  
Vol 287-290 ◽  
pp. 1112-1115
Author(s):  
Jun Hong Zhang

In order to reduce the coke consumption of Blast Furnace(BF),a relevance analysis is carried out for operation parameters and fuel rate of BF,and a prediction method that is combining clustering analysis and artificial neural network for coke rate is proposed. The data cluster is divided into several classes by clustering analysis,the data similarity is high,and the neural network model is used to realize the prediction of coke rate. By combining the neural network with clustering analysis,the data in one BF is simulated,and the results are compared with the traditional neural network model. The result shows that the improved neural network has a higher accuracy, the average absolute error can be decreased by 3.13kg/t, and the average relative error can be decreased by 5.19%, it will have a good using foreground.


2020 ◽  
Vol 10 (19) ◽  
pp. 6926
Author(s):  
Anna Hoła ◽  
Łukasz Sadowski

The paper presents the results of the verification of the neural method for assessing the humidity of saline brick walls. The method was previously developed by the authors and can be useful for the nondestructive assessment of the humidity of walls in historic buildings when destructive intervention during testing is not possible due to conservation restrictions. However, before being implemented in construction practice, this method requires validation by verification on other historic buildings, which to date has not been done. The paper presents the results of such verification, which has never been carried out before, and thus extends the scope of knowledge related to the issue. For experimental verification of the artificial neural network (ANN), the results of moisture tests of two selected historic buildings, other than those used for ANN learning and testing processes, were used. An artificial unidirectional multilayer neural network with backward error propagation and the algorithm for learning conjugate gradient (CG) was found to be useful for this purpose. The obtained satisfactory value of the linear correlation coefficient R of 0.807 and low average absolute error |Δf| of 1.16% confirms this statement. The values of average relative error |RE| of 19.02%, which were obtained in this research, were not very high for an in-situ study. Moreover, the relative error values |RE| were mostly in the range of 15% to 25%.


2010 ◽  
Vol 22 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Tamer Mansour ◽  
◽  
Atsushi Konno ◽  
Masaru Uchiyama

This paper studies the use of neural networks as a tuning tool for the gain in Modified Proportional-Integral-Derivative (MPID) control used to control a flexible manipulator. The vibration control gain in the MPID controller has been determined in an empirical way so far. It is a considerable time consuming process because the vibration control performance depends not only on the vibration control gain but also on the other parameters such as the payload, references and PD joint servo gains. Hence, the vibration control gain must be tuned considering the other parameters. In order to find optimal vibration control gain for the MPID controller, a neural network based approach is proposed in this paper. The proposed neural network finds an optimum vibration control gain that minimizes a criteria function. The criteria function is selected to represent the effect of the vibration of the end effector in addition to the speed of response. The scaled conjugate gradient algorithm is used as a learning algorithm for the neural network. Tuned gain response results are compared to results for other types of gains. The effectiveness of using the neural network appears in the reduction of the computational time and the ability to tune the gain with different loading condition.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 53-64
Author(s):  
Siti Nabilah Syuhada Abdullah ◽  
Ani Shabri ◽  
Ruhaidah Samsudin

Since rice is a staple food in Malaysia, its price fluctuations pose risks to the producers, suppliers and consumers. Hence, an accurate prediction of paddy price is essential to aid the planning and decision-making in related organizations. The artificial neural network (ANN) has been widely used as a promising method for time series forecasting. In this paper, the effectiveness of integrating empirical mode decomposition (EMD) into an ANN model to forecast paddy price is investigated. The hybrid method is applied on a series of monthly paddy prices fromFebruary 1999 up toMay 2018 as recorded in the Malaysian Ringgit (MYR) per metric tons. The performance of the simple ANN model and the EMD-ANN model was measured and compared based on their root mean squared Error (RMSE), mean absolute error (MAE) and mean percentage error (MPE). This study finds that the integration of EMD into the neural network model improves the forecasting capabilities. The use of EMD in the ANN model made the forecast errors reduced significantly, and the RMSE was reduced by 0.012, MAE by 0.0002 and MPE by 0.0448.


2010 ◽  
Vol 29-32 ◽  
pp. 2804-2808 ◽  
Author(s):  
Jian Yao ◽  
Jin Xu

In view of the problem that it is difficult to calculate the Fanger’s PMV equation due to its complicated iterative process, a backpropagation neural network (BPNN) model was built to predict PMV. Air temperature, relative humidity, mean radiant temperature, air velocity, metabolic rate and clothing index were used as the input of neural network and PMV output as the output of the neural network. The results show that this prediction approach is very effective and has higher accuracy absolute error below 5%. As a conclusion, this study has a real significance, because it gives a new method with reliability and accuracy in the prediction of PMV.


2014 ◽  
Vol 644-650 ◽  
pp. 1654-1657
Author(s):  
Dai Yuan Zhang ◽  
Shan Jiang Hou

To describe the performance for a new kind of neural network, This paper discusses the approximation of the neural network using a kind of rational spline weight function. The rational spline consists of piecewise rational functions with cubic numerators and linear denominators. The theoretic formula of approximation is proposed and an example is also given. It can be concluded that this new neural network can get very high training accuracy.


Sign in / Sign up

Export Citation Format

Share Document