scholarly journals Verification of a Nondestructive Method for Assessing the Humidity of Saline Brick Walls in Historical Buildings

2020 ◽  
Vol 10 (19) ◽  
pp. 6926
Author(s):  
Anna Hoła ◽  
Łukasz Sadowski

The paper presents the results of the verification of the neural method for assessing the humidity of saline brick walls. The method was previously developed by the authors and can be useful for the nondestructive assessment of the humidity of walls in historic buildings when destructive intervention during testing is not possible due to conservation restrictions. However, before being implemented in construction practice, this method requires validation by verification on other historic buildings, which to date has not been done. The paper presents the results of such verification, which has never been carried out before, and thus extends the scope of knowledge related to the issue. For experimental verification of the artificial neural network (ANN), the results of moisture tests of two selected historic buildings, other than those used for ANN learning and testing processes, were used. An artificial unidirectional multilayer neural network with backward error propagation and the algorithm for learning conjugate gradient (CG) was found to be useful for this purpose. The obtained satisfactory value of the linear correlation coefficient R of 0.807 and low average absolute error |Δf| of 1.16% confirms this statement. The values of average relative error |RE| of 19.02%, which were obtained in this research, were not very high for an in-situ study. Moreover, the relative error values |RE| were mostly in the range of 15% to 25%.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Rongji Zhang ◽  
Feng Sun ◽  
Ziwen Song ◽  
Xiaolin Wang ◽  
Yingcui Du ◽  
...  

Traffic flow forecasting is the key to an intelligent transportation system (ITS). Currently, the short-term traffic flow forecasting methods based on deep learning need to be further improved in terms of accuracy and computational efficiency. Therefore, a short-term traffic flow forecasting model GA-TCN based on genetic algorithm (GA) optimized time convolutional neural network (TCN) is proposed in this paper. The prediction error was considered as the fitness value and the genetic algorithm was used to optimize the filters, kernel size, batch size, and dilations hyperparameters of the temporal convolutional neural network to determine the optimal fitness prediction model. Finally, the model was tested using the public dataset PEMS. The results showed that the average absolute error of the proposed GA-TCN decreased by 34.09%, 22.42%, and 26.33% compared with LSTM, GRU, and TCN in working days, while the average absolute error of the GA-TCN decreased by 24.42%, 2.33%, and 3.92% in weekend days, respectively. The results indicate that the model proposed in this paper has a better adaptability and higher prediction accuracy in short-term traffic flow forecasting compared with the existing models. The proposed model can provide important support for the formulation of a dynamic traffic control scheme.



2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ludi Wang ◽  
Wei Zhou ◽  
Ying Xing ◽  
Xiaoguang Zhou

The prevention, evaluation, and treatment of hypertension have attracted increasing attention in recent years. As photoplethysmography (PPG) technology has been widely applied to wearable sensors, the noninvasive estimation of blood pressure (BP) using the PPG method has received considerable interest. In this paper, a method for estimating systolic and diastolic BP based only on a PPG signal is developed. The multitaper method (MTM) is used for feature extraction, and an artificial neural network (ANN) is used for estimation. Compared with previous approaches, the proposed method obtains better accuracy; the mean absolute error is 4.02 ± 2.79 mmHg for systolic BP and 2.27 ± 1.82 mmHg for diastolic BP.



Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3938
Author(s):  
Ivan Simko

The color of plant leaves is moderated by the content of pigments, which can show considerable dorsiventral distribution. Two typical examples are leafy vegetables and ornamentals, wherein red and green color surfaces can be seen on the same leaf. The proof of concept is provided for predictive modeling of a leaf conceptual mid-point quasi-color (CMQ) from the content of pigments. The CMQ idea is based on the hypothesis that the content of pigments in leaves is associated with the combined color from both surfaces. The CMQ, which is calculated from CIELab color coordinates at adaxial and abaxial antipodes, is thus not an actual color, but a notion that can be used in modeling. The CMQ coordinates, predicted from the content of chlorophylls and anthocyanins by means of an artificial neural network (ANN), matched well with the CMQ coordinates empirically found on photosynthetically active leaves of lettuce (Lactuca sativa L.), but also with other plant species with comparable leaf attributes. Modeled values of lightness (qL*) decreased with the increasing content of both pigments, while the redness or greenness (qa*) and yellowness or blueness (qb*) of the CMQ were affected more by a relative content of chlorophylls and anthocyanins in leaves. The highest vividness of quasi-colors (qC*) was modeled for leaves with a high content of either pigment alone. The model predicted a substantially duller quasi-color for leaves with chlorophylls and anthocyanins present together, particularly when both pigments were present at very high levels.



MATEMATIKA ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 53-64
Author(s):  
Siti Nabilah Syuhada Abdullah ◽  
Ani Shabri ◽  
Ruhaidah Samsudin

Since rice is a staple food in Malaysia, its price fluctuations pose risks to the producers, suppliers and consumers. Hence, an accurate prediction of paddy price is essential to aid the planning and decision-making in related organizations. The artificial neural network (ANN) has been widely used as a promising method for time series forecasting. In this paper, the effectiveness of integrating empirical mode decomposition (EMD) into an ANN model to forecast paddy price is investigated. The hybrid method is applied on a series of monthly paddy prices fromFebruary 1999 up toMay 2018 as recorded in the Malaysian Ringgit (MYR) per metric tons. The performance of the simple ANN model and the EMD-ANN model was measured and compared based on their root mean squared Error (RMSE), mean absolute error (MAE) and mean percentage error (MPE). This study finds that the integration of EMD into the neural network model improves the forecasting capabilities. The use of EMD in the ANN model made the forecast errors reduced significantly, and the RMSE was reduced by 0.012, MAE by 0.0002 and MPE by 0.0448.



Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 215 ◽  
Author(s):  
Donghun Lee ◽  
Kwanho Kim

Recently, the prediction of photovoltaic (PV) power has become of paramount importance to improve the expected revenue of PV operators and the effective operations of PV facility systems. Additionally, the precise PV power output prediction in an hourly manner enables more sophisticated strategies for PV operators and markets as the electricity price in a renewable energy market is continuously changing. However, the hourly prediction of PV power outputs is considered as a challenging problem due to the dynamic natures of meteorological information not only in a day but also across days. Therefore, in this paper, we suggest three PV power output prediction methods such as artificial neural network (ANN)-, deep neural network (DNN)-, and long and short term memory (LSTM)-based models that are capable to understand the hidden relationships between meteorological information and actual PV power outputs. In particular, the proposed LSTM based model is designed to capture both hourly patterns in a day and seasonal patterns across days. We conducted the experiments by using a real-world dataset. The experimental results show that the proposed ANN based model fails to yield satisfactory results, and the proposed LSTM based model successfully better performs more than 50% compared to the conventional statistical models in terms of mean absolute error.



MAUSAM ◽  
2021 ◽  
Vol 62 (1) ◽  
Author(s):  
N. VIVEKANANDAN

Prediction of runoff is often important for optimal design of water storage and drainage works andmanagement of extreme events like floods and droughts. Rainfall-runoff (RR) models are considered to be most effectiveand expedient tool for runoff prediction. Number of models like stochastic, conceptual, deterministic, black-box, etc. iscommonly available for RR modelling. This paper details a study involving the use of Artificial Neural Network (ANN)and Regression (REG) approaches for prediction of runoff for Betwa and Chambal regions. Model performanceindicators such as model efficiency, correlation coefficient, root mean square error and root mean absolute error are usedto evaluate the performance of ANN and REG for runoff prediction. Statistical parameters are employed to find theaccuracy in prediction by ANN and REG for the data under study. The paper presents that ANN approach is found to besuitable for prediction of runoff for Betwa and Chambal regions.



2022 ◽  
pp. 375-398
Author(s):  
Jillella Gopala Krishna ◽  
Probir Kumar Ojha

The authors have developed an artificial neural network model using odor threshold (OT) property data for diverse odorant components present in black tea (76 components) and coffee (46 components). The models were validated in terms of both internal and external validation criteria signifying acceptable results. The authors found the significant features controlling the OT property using Mean Absolute Error (MAE)-based criteria in a backward elimination of descriptors, one in each turn. The present results well-corroborated the previously published PLS-regression based chemometric model results.



2012 ◽  
Vol 170-173 ◽  
pp. 1013-1016
Author(s):  
Fu Qiang Gao ◽  
Xiao Qiang Wang

Prediction of peak particle velocity (PPV) is very complicated due to the number of influencing parameters affecting seism wave propagation. In this paper, artificial neural network (ANN) is implemented to develop a model to predict PPV in a blasting operation. Based on the measured parameters of maximum explosive charge used per delay and distance between blast face to monitoring point, a three-layer ANN was found to be optimum with architecture 2-5-1. Through the analysis of coefficient of determination (CoD) and mean absolute error (MAE) between monitored and predicted values of PPV, it indicates that the forecast data by the ANN model is close to the actua1 values.



2014 ◽  
Vol 563 ◽  
pp. 312-315
Author(s):  
Yu Lian Jiang

To suit for the condition that the relative error is more popular than the absolute error, and overcome the shortcoming of the traditional Back propagation neural network, this paper proposed an improved Back propagation algorithm with additional momentum item based on the sum of relative error square. The improved algorithm was applied to the example of the natural gas load forecasting, simulations showed that the improved algorithm has faster training speed than the traditional algorithm, and has higher accuracy as while.



2009 ◽  
Vol 12 (3) ◽  
pp. 351-364 ◽  
Author(s):  
A. S. Islam

A river stage neural network model has been developed to study and predict the water level of Dhaka city. A total of five stations located at the border area of Bangladesh on the Ganges, Brahmaputra and Meghna rivers are selected as input nodes and Dhaka on the Buriganga river is the output node for the neural network. This model is trained with river stage data for a period of 1998 to 2004 and validated with data from 2005 to 2007. The river stage of Dhaka has been predicted for up to ten days with very high accuracy. Values of R2, root mean square and mean absolute error are found ranging from 0.537 to 0.968, 0.607 m to 0.206 m and 0.475 m to 0.154 m, respectively, during training and validation of the model. The results of this study can be useful for real-time flood forecasting by reducing computational time, improving water resources management and reducing the unnecessary cost of field data collection.



Sign in / Sign up

Export Citation Format

Share Document