scholarly journals Prediction of scour depth around bridge piers using self-adaptive extreme learning machine

2016 ◽  
Vol 19 (2) ◽  
pp. 207-224 ◽  
Author(s):  
Isa Ebtehaj ◽  
Ahmed M. A. Sattar ◽  
Hossein Bonakdari ◽  
Amir Hossein Zaji

Accurate prediction of pier scour can lead to economic design of bridge piers and prevent catastrophic incidents. This paper presents the application of self-adaptive evolutionary extreme learning machine (SAELM) to develop a new model for the prediction of local scour around bridge piers using 476 field pier scour measurements with four shapes of piers: sharp, round, cylindrical, and square. The model network parameters are optimized using the differential evolution algorithm. The best SAELM model calculates the scour depth as a function of pier dimensions and the sediment mean diameter. The developed SAELM model had the lowest error indicators when compared to regression-based prediction models for root mean square error (RMSE) (0.15, 0.65, respectively) and mean absolute relative error (MARE) (0.50, 2.0, respectively). The SAELM model was found to perform better than artificial neural networks or support vector machines on the same dataset. Parametric analysis showed that the new model predictions are influenced by pier dimensions and bed-sediment size and produce similar trends of variations of scour-hole depth as reported in literature and previous experimental measurements. The prediction uncertainty of the developed SAELM model is quantified and compared with existing regression-based models and found to be the least, ±0.03 compared with ±0.10 for other models.

2019 ◽  
Vol 21 (6) ◽  
pp. 1082-1101 ◽  
Author(s):  
M. Rashki Ghaleh Nou ◽  
M. Azhdary Moghaddam ◽  
M. Shafai Bajestan ◽  
H. Md. Azamathulla

Abstract In this study, the equilibrium scour depth downstream of the weir (ds-a), the maximum scour depth downstream of the weir (ds-max), the equilibrium scour depth upstream of the weir (dus-a) and the maximum scour depth upstream of the weir (dus-max) were simulated around the submerged weirs using the self-adaptive extreme learning machine (SAELM) model. In other words, the SAELM was utilized for the simulation of the scour depths around submerged weirs for the first time. In addition, Monte Carlo simulations (MCSs) were used to increase the accuracy of the artificial intelligence model. The results of modeling were validated using k-fold cross validation. At first, all effective parameters on the scour depth were determined and five distinct SAELM models were defined. Then, the optimal activation function of the SAELM model was obtained. By analyzing the results of modeling, the best models were identified to estimate ds-a/ht, ds-max/ht, dus-a/ht, and dus-max/ht, and the ratio of the average inflow velocity to the critical velocity (U0/Uc) was determined as the most effective input parameter. In the following, the results of superior models were compared with the artificial neural network (ANN) and support vector machine (SVM). The results showed that SAELM models were more accurate. The uncertainty analysis was performed for these models, some of them were overestimated and others were underestimated. In addition, some equations were presented for equilibrium models for calculation of scour depth around the submerged weirs, which are used by environmental and hydraulic engineers without previous knowledge about the artificial intelligence models. Finally, a partial derivative sensitivity analysis (PDSA) was performed for all input parameters of the superior models.


2018 ◽  
Vol 89 (7) ◽  
pp. 1180-1197 ◽  
Author(s):  
Zhiyu Zhou ◽  
Xu Gao ◽  
Jianxin Zhang ◽  
Zefei Zhu ◽  
Xudong Hu

This study proposes an ensemble differential evolution online sequential extreme learning machine (DE-OSELM) for textile image illumination correction based on the rotation forest framework. The DE-OSELM solves the inaccuracy and long training time problems associated with traditional illumination correction algorithms. First, the Grey–Edge framework is used to extract the low-dimensional and efficient image features as online sequential extreme learning machine (OSELM) input vectors to improve the training and learning speed of the OSELM. Since the input weight and hidden-layer bias of OSELMs are randomly obtained, the OSELM algorithm has poor prediction accuracy and low robustness. To overcome this shortcoming, a differential evolution algorithm that has the advantages of good global search ability and robustness is used to optimize the input weight and hidden-layer bias of the DE-OSELM. To further improve the generalization ability and robustness of the illumination correction model, the rotation forest algorithm is used as the ensemble framework, and the DE-OSELM is used as the base learner to replace the regression tree algorithm in the original rotation forest algorithm. Then, the obtained multiple different DE-OSELM learners are aggregated to establish the prediction model. The experimental results show that compared with the textile color correction algorithm based on the support vector regression and extreme learning machine algorithms, the ensemble illumination correction method achieves high prediction accuracy, strong robustness, and good generalization ability.


Author(s):  
Mark N. Landers ◽  
David S. Mueller

Field measurements of channel scour at bridges are needed to improve the understanding of scour processes and the ability to accurately predict scour depths. An extensive data base of pier-scour measurements has been developed over the last several years in cooperative studies between state highway departments, the Federal Highway Administration, and the U.S. Geological Survey. Selected scour processes and scour design equations are evaluated using 139 measurements of local scour in live-bed and clear-water conditions. Pier-scour measurements were made at 44 bridges around 90 bridge piers in 12 states. The influence of pier width on scour depth is linear in logarithmic space. The maximum observed ratio of pier width to scour depth is 2.1 for piers aligned to the flow. Flow depth and scour depth were found to have a relation that is linear in logarithmic space and that is not bounded by some critical ratio of flow depth to pier width. Comparisons of computed and observed scour depths indicate that none of the selected equations accurately estimate the depth of scour for all of the measured conditions. Some of the equations performed well as conservative design equations; however, they overpredict many observed scour depths by large amounts. Some equations fit the data well for observed scour depths less than about 3 m (9.8 ft), but significantly underpredict larger observed scour depths.


2021 ◽  
Vol 13 (7) ◽  
pp. 3744
Author(s):  
Mingcheng Zhu ◽  
Shouqian Li ◽  
Xianglong Wei ◽  
Peng Wang

Fishbone-shaped dikes are always built on the soft soil submerged in the water, and the soft foundation settlement plays a key role in the stability of these dikes. In this paper, a novel and simple approach was proposed to predict the soft foundation settlement of fishbone dikes by using the extreme learning machine. The extreme learning machine is a single-hidden-layer feedforward network with high regression and classification prediction accuracy. The data-driven settlement prediction models were built based on a small training sample size with a fast learning speed. The simulation results showed that the proposed methods had good prediction performances by facilitating comparisons of the measured data and the predicted data. Furthermore, the final settlement of the dike was predicted by using the models, and the stability of the soft foundation of the fishbone-shaped dikes was assessed based on the simulation results of the proposed model. The findings in this paper suggested that the extreme learning machine method could be an effective tool for the soft foundation settlement prediction and assessment of the fishbone-shaped dikes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ji-Yong An ◽  
Fan-Rong Meng ◽  
Zi-Ji Yan

Abstract Background Prediction of novel Drug–Target interactions (DTIs) plays an important role in discovering new drug candidates and finding new proteins to target. In consideration of the time-consuming and expensive of experimental methods. Therefore, it is a challenging task that how to develop efficient computational approaches for the accurate predicting potential associations between drug and target. Results In the paper, we proposed a novel computational method called WELM-SURF based on drug fingerprints and protein evolutionary information for identifying DTIs. More specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up robot features (SURF) is employed to extract sequence key feature from PSSM. For drug fingerprints, the chemical structure of molecular substructure fingerprints was used to represent drug as feature vector. Take account of the advantage that the Weighted Extreme Learning Machine (WELM) has short training time, good generalization ability, and most importantly ability to efficiently execute classification by optimizing the loss function of weight matrix. Therefore, the WELM classifier is used to carry out classification based on extracted features for predicting DTIs. The performance of the WELM-SURF model was evaluated by experimental validations on enzyme, ion channel, GPCRs and nuclear receptor datasets by using fivefold cross-validation test. The WELM-SURF obtained average accuracies of 93.54, 90.58, 85.43 and 77.45% on enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also compared our performance with the Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM) on enzyme and ion channels dataset and other exiting methods on four datasets. By comparing with experimental results, the performance of WELM-SURF is significantly better than that of ELM, SVM and other previous methods in the domain. Conclusion The results demonstrated that the proposed WELM-SURF model is competent for predicting DTIs with high accuracy and robustness. It is anticipated that the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics studies related to DTIs prediction.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xue-cun Yang ◽  
Xiao-ru Yan ◽  
Chun-feng Song

For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM) is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM) and kernel function extreme learning machine prediction model (KELM). The results prove that mean square error (MSE) for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.


2021 ◽  
Vol 5 (2) ◽  
pp. 62-70
Author(s):  
Ömer KASIM

Cardiotocography (CTG) is used for monitoring the fetal heart rate signals during pregnancy. Evaluation of these signals by specialists provides information about fetal status. When a clinical decision support system is introduced with a system that can automatically classify these signals, it is more sensitive for experts to examine CTG data. In this study, CTG data were analysed with the Extreme Learning Machine (ELM) algorithm and these data were classified as normal, suspicious and pathological as well as benign and malicious. The proposed method is validated with the University of California International CTG data set. The performance of the proposed method is evaluated with accuracy, f1 score, Cohen kappa, precision, and recall metrics. As a result of the experiments, binary classification accuracy was obtained as 99.29%. There was only 1 false positive.  When multi-class classification was performed, the accuracy was obtained as 98.12%.  The amount of false positives was found as 2. The processing time of the training and testing of the ELM algorithm were quite minimized in terms of data processing compared to the support vector machine and multi-layer perceptron. This result proved that a high classification accuracy was obtained by analysing the CTG data both binary and multiple classification.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nan Liu ◽  
Jiuwen Cao ◽  
Zhi Xiong Koh ◽  
Pin Pin Pek ◽  
Marcus Eng Hock Ong

This paper presents a novel risk stratification method using extreme learning machine (ELM). ELM was integrated into a scoring system to identify the risk of cardiac arrest in emergency department (ED) patients. The experiments were conducted on a cohort of 1025 critically ill patients presented to the ED of a tertiary hospital. ELM and voting based ELM (V-ELM) were evaluated. To enhance the prediction performance, we proposed a selective V-ELM (SV-ELM) algorithm. The results showed that ELM based scoring methods outperformed support vector machine (SVM) based scoring method in the receiver operation characteristic analysis.


Sign in / Sign up

Export Citation Format

Share Document