scholarly journals Uncertainty in design flood profiles derived by hydraulic modelling

2012 ◽  
Vol 43 (6) ◽  
pp. 753-761 ◽  
Author(s):  
Luigia Brandimarte ◽  
Giuliano Di Baldassarre

The scientific literature has widely shown that hydraulic modelling is affected by many sources of uncertainty (e.g. model structure, input data, model parameters). However, when hydraulic models are used for engineering purposes (e.g. flood defense design), there is still a tendency to make a deterministic use of them. More specifically, the prediction of flood design profiles is often based on the outcomes of a calibrated hydraulic model. Despite the good results in model calibration, this prediction is affected by significant uncertainty, which is commonly considered by adding a freeboard to the simulated flood profile. A more accurate approach would require an explicit analysis of the sources of uncertainty affecting hydraulic modelling and design flood estimation. This paper proposes an alternative approach, which is based on the use of uncertain flood profiles, where the most significant sources of uncertainty are explicitly analyzed. An application to the Po river reach between Cremona and Borgoforte (Italy) is used to illustrate the proposed framework and compare it to the traditional approach. This paper shows that the deterministic approach underestimates the design flood profile and questions whether the freeboard, often arbitrarily defined, might lead to a false perception of additional safety levels.

Author(s):  
Paul D. Arendt ◽  
Wei Chen ◽  
Daniel W. Apley

Model updating, which utilizes mathematical means to combine model simulations with physical observations for improving model predictions, has been viewed as an integral part of a model validation process. While calibration is often used to “tune” uncertain model parameters, bias-correction has been used to capture model inadequacy due to a lack of knowledge of the physics of a problem. While both sources of uncertainty co-exist, these two techniques are often implemented separately in model updating. This paper examines existing approaches to model updating and presents a modular Bayesian approach as a comprehensive framework that accounts for many sources of uncertainty in a typical model updating process and provides stochastic predictions for the purpose of design. In addition to the uncertainty in the computer model parameters and the computer model itself, this framework accounts for the experimental uncertainty and the uncertainty due to the lack of data in both computer simulations and physical experiments using the Gaussian process model. Several challenges are apparent in the implementation of the modular Bayesian approach. We argue that distinguishing between uncertain model parameters (calibration) and systematic inadequacies (bias correction) is often quite challenging due to an identifiability issue. We present several explanations and examples of this issue and bring up the needs of future research in distinguishing between the two sources of uncertainty.


2016 ◽  
Vol 49 (8) ◽  
pp. 719-729
Author(s):  
Hyunseung Lee ◽  
Taesam Lee ◽  
Taewoong Park ◽  
Chanyoung Son

2021 ◽  
Author(s):  
Eduardo Emilio Sanchez-Leon ◽  
Natascha Brandhorst ◽  
Bastian Waldowski ◽  
Ching Pui Hung ◽  
Insa Neuweiler ◽  
...  

<p>The success of data assimilation systems strongly depends on the suitability of the generated ensembles. While in theory data assimilation should correct the states of an ensemble of models, especially if model parameters are included in the update, its effectiveness will depend on many factors, such as ensemble size, ensemble spread, and the proximity of the prior ensemble simulations to the data. In a previous study, we generated an ensemble-based data-assimilation framework to update model states and parameters of a coupled land surface-subsurface model. As simulation system we used the Terrestrial Systems Modeling Platform TerrSysMP, with the community land-surface model (CLM) coupled to the subsurface model Parflow. In this work, we used the previously generated ensemble to assess the effect of uncertain input forcings (i.e. precipitation), unknown subsurface parameterization, and/or plant physiology in data assimilation. The model domain covers a rectangular area of 1×5km<sup>2</sup>, with a uniform depth of 50m. The subsurface material is divided into four units, and the top soil layers consist of three different soil types with different vegetation. Streams are defined along three of the four boundaries of the domain. For data assimilation, we used the TerrsysMP PDAF framework. We defined a series of data assimilation experiments in which sources of uncertainty were considered individually, and all additional settings of the ensemble members matched those of the reference. To evaluate the effect of all sources of uncertainty combined, we designed an additional test in which the input forcings, subsurface parameters, and the leaf area index of the ensemble were all perturbed. In all these tests, the reference model had homogenous subsurface units and the same grid resolution as all models of the ensemble. We used point measurements of soil moisture in all data assimilation experiments. We concluded that precipitation dominates the dynamics of the simulations, and perturbing the precipitation fields for the ensemble have a major impact in the performance of the assimilation. Still, considerable improvements are observed compared to open-loop simulations. In contrast, the effect of variable plant physiology was minimal, with no visible improvement in relevant fluxes such as evapotranspiration. As expected, improved ensemble predictions are propagated longer in time when parameters are included in the update.</p>


2021 ◽  
Author(s):  
Matteo Berti ◽  
Alessandro Simoni

<p>Rainfall is the most significant factor for debris flows triggering. Water is needed to saturate the soil, initiate the sediment motion (regardless of the mobilization mechanism) and transform the solid debris into a fluid mass that can move rapidly downslope. This water is commonly provided by rainfall or rainfall and snowmelt. Consequently, most warning systems rely on the use of rainfall thresholds to predict debris flow occurrence. Debris flows thresholds are usually empirically-derived from the rainfall records that caused past debris flows in a certain area, using a combination of selected precipitation measurements (such as event rainfall P, duration D, or average intensity I) that describe critical rainfall conditions. Recent years have also seen a growing interest in the use of coupled hydrological and slope stability models to derive physically-based thresholds for shallow landslide initiation.</p><p>In both cases, rainfall thresholds are affected by significant uncertainty. Sources of uncertainty include: measurement errors; spatial variability of the rainfall field; incomplete or uncertain debris flow inventory; subjective definition of the “rainfall event”; use of subjective criteria to define the critical conditions; uncertainty in model parameters (for physically-based approaches). Rainfall measurement is widely recognized as a main source of uncertainty due to the extreme time-space variability that characterize intense rainfall events in mountain areas. However, significant errors can also arise by inaccurate information reported in landslide inventories on the timing of debris flows, or by the criterion used to define triggering intensities.</p><p>This study analyzes the common sources of uncertainty associated to rainfall thresholds for debris flow occurrence and discusses different methods to quantify them. First, we give an overview of the various approaches used in the literature to measure the uncertainty caused by random errors or procedural defects. These approaches are then applied to debris flows using real data collected in the Dolomites (Northen Alps, Itay), in order to estimate the variabilty of each single factor (precipitation, triggering timing, triggering intensity..). Individual uncertainties are then combined to obtain the overall uncertain of the rainfall threshold, which can be calculated using the classical method of “summation in quadrature” or a more effective approach based on Monte Carlo simulations. The uncertainty budget allows to identify the biggest contributors to the final variability and it is also useful to understand if this variability can be reduced to make our thresholds more precise.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document