scholarly journals Application of Z-numbers to teleconnection modeling between monthly precipitation and large scale sea surface temperature

2021 ◽  
Author(s):  
Hessam Najafi ◽  
Vahid Nourani ◽  
Elnaz Sharghi ◽  
Kiyoumars Roushangar ◽  
Dominika Dąbrowska

Abstract The teleconnection modeling of hydro-climatic events is a complex problem with highly uncertain circumstances. In contrast to the classic fuzzy logic methods, by using the Z-number in addition to the constraint of information, and by evaluating the data reliability, it is possible to characterize the degree of ambiguity of data. In this regard, this study investigates the performance of the Z-number-based model (ZBM) in prediction of classified monthly precipitation (MP) events of two synoptic stations in Iran (up to five months in advance). To this end, the sea surface temperature (SST) of adjacent seas was used as a predictor. The suggested model, by using of Z-number directly and applying fuzzy Hausdorff distance to determine weights of if-then rules, predicted MP events of both the stations with over 70% confidence. Analysis of the results in the test step showed that the ZBM compared to the traditional fuzzy approach improved the results by 69% for Kermanshah and 112% for Tabriz. Overall, the Z-number concept by assessing events reliability, can be used in various sectors of water resources management such as decision-making and drought monitoring.

2010 ◽  
Vol 23 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Liew Juneng ◽  
Fredolin T. Tangang ◽  
Hongwen Kang ◽  
Woo-Jin Lee ◽  
Yap Kok Seng

Abstract This paper compares the skills of four different forecasting approaches in predicting the 1-month lead time of the Malaysian winter season precipitation. Two of the approaches are based on statistical downscaling techniques of multimodel ensembles (MME). The third one is the ensemble of raw GCM forecast without any downscaling, whereas the fourth approach, which provides a baseline comparison, is a purely statistical forecast based solely on the preceding sea surface temperature anomaly. The first multimodel statistical downscaling method was developed by the Asia-Pacific Economic Cooperation (APEC) Climate Center (APCC) team, whereas the second is based on the canonical correlation analysis (CCA) technique using the same predictor variables. For the multimodel downscaling ensemble, eight variables from seven operational GCMs are used as predictors with the hindcast forecast data spanning a period of 21 yr from 1983/84 to 2003/04. The raw GCM forecast ensemble tends to have higher skills than the baseline skills of the purely statistical forecast that relates the dominant modes of observed sea surface temperature variability to precipitation. However, the downscaled MME forecasts have higher skills than the raw GCM products. In particular, the model developed by APCC showed significant improvement over the peninsular Malaysia region. This is attributed to the model’s ability to capture regional and large-scale predictor signatures from which the additional skills originated. Overall, the results showed that the appropriate downscaling technique and ensemble of various GCM forecasts could result in some skill enhancement, particularly over peninsular Malaysia, where other models tend to have lower or no skills.


2020 ◽  
Vol 12 (16) ◽  
pp. 2554
Author(s):  
Christopher J. Merchant ◽  
Owen Embury

Atmospheric desert-dust aerosol, primarily from north Africa, causes negative biases in remotely sensed climate data records of sea surface temperature (SST). Here, large-scale bias adjustments are deduced and applied to the v2 climate data record of SST from the European Space Agency Climate Change Initiative (CCI). Unlike SST from infrared sensors, SST measured in situ is not prone to desert-dust bias. An in-situ-based SST analysis is combined with column dust mass from the Modern-Era Retrospective analysis for Research and Applications, Version 2 to deduce a monthly, large-scale adjustment to CCI analysis SSTs. Having reduced the dust-related biases, a further correction for some periods of anomalous satellite calibration is also derived. The corrections will increase the usability of the v2 CCI SST record for oceanographic and climate applications, such as understanding the role of Arabian Sea SSTs in the Indian monsoon. The corrections will also pave the way for a v3 climate data record with improved error characteristics with respect to atmospheric dust aerosol.


2008 ◽  
Vol 65 (8) ◽  
pp. 1610-1622 ◽  
Author(s):  
Julie A. Thayer ◽  
Douglas F. Bertram ◽  
Scott A. Hatch ◽  
Mark J. Hipfner ◽  
Leslie Slater ◽  
...  

We tested the hypothesis of synchronous interannual changes in forage fish dynamics around the North Pacific Rim. To do this, we sampled forage fish communities using a seabird predator, the rhinoceros auklet ( Cerorhinca monocerata ), at six coastal study sites from Japan to California. We investigated whether take of forage fishes was related to local marine conditions as indexed by sea surface temperature (SST). SST was concordant across sites in the eastern Pacific, but inversely correlated between east and west. Forage fish communities consisted of anchovy ( Engraulis spp.), sandlance ( Ammodytes spp.), capelin ( Mallotus spp.), and juvenile rockfish ( Sebastes spp.), among others, and take of forage fish varied in response to interannual and possibly lower-frequency oceanographic variability. Take of primary forage species were significantly related to changes in SST only at the eastern sites. We found synchrony in interannual variation of primary forage fishes across several regions in the eastern Pacific, but no significant east–west correlations. Specifically in the Japan Sea, factors other than local SST or interannual variability may more strongly influence forage fishes. Predator diet sampling offers a fishery-independent, large-scale perspective on forage fish dynamics that may be difficult to obtain using conventional means of study.


2019 ◽  
Vol 15 (6) ◽  
pp. 1985-1998
Author(s):  
Anson Cheung ◽  
Baylor Fox-Kemper ◽  
Timothy Herbert

Abstract. Marine sediments have greatly improved our understanding of the climate system, but their interpretation often assumes that certain climate mechanisms operate consistently over all timescales of interest and that variability at one or a few sample sites is representative of an oceanographic province. In this study, we test these assumptions using modern observations in an idealized manner mimicking paleo-reconstruction to investigate whether sea surface temperature and productivity proxy records in the Southern California Current System can be used to reconstruct Ekman upwelling. The method uses extended empirical orthogonal function (EEOF) analysis of the covariation of alongshore wind stress, chlorophyll, and sea surface temperature as measured by satellites from 2002 to 2009. We find that EEOF1 does not reflect an Ekman upwelling pattern but instead much broader California Current processes. EEOF2 and 3 reflect upwelling patterns, but these patterns are timescale dependent and regional. Thus, the skill of using one site to reconstruct the large-scale dominant patterns is spatially dependent. Lastly, we show that using multiple sites and/or multiple variables generally improves field reconstruction. These results together suggest that caution is needed when attempting to extrapolate mechanisms that may be important on seasonal timescales (e.g., Ekman upwelling) to deeper time but also the advantage of having multiple proxy records.


Sign in / Sign up

Export Citation Format

Share Document