Water quality aspects related to domestic drinking water storage tanks and consideration in current standards and guidelines throughout the world – a review

2020 ◽  
Vol 18 (4) ◽  
pp. 439-463
Author(s):  
Irene Slavik ◽  
Keila Roberta Oliveira ◽  
Peter Batista Cheung ◽  
Wolfgang Uhl

Abstract In many parts of the world, drinking water storage takes place in near-house or in-house tanks. This can impact drinking water quality considerably. International and numerous national standards and guidelines addressing the construction, installation and operation of domestic drinking water storage tanks are reviewed on their consideration of water quality aspects and the minimisation of health risks associated with drinking water storage. Several national and international standards and guidelines are reviewed in terms of drinking water quality requirements. Factors that have an impact on water quality in relation to the use of domestic drinking water storage tanks are summarised comprehensively. The impact of the domestic storage of drinking water on water quality, the points and locations of use, their positioning, the materials they are made of, their design and operation, as well as aspects of how they are operated and maintained is outlined and discussed in detail. Finally, the incorporation of aspects regarding water quality in drinking water storage tanks in standards and guidelines is presented and assessed. To make the use of domestic drinking water storage tanks safer and more efficient, recommendations for modifications, improvements and extensions of respective standards are made.

2007 ◽  
Vol 5 (2) ◽  
pp. 307-313 ◽  
Author(s):  
Jay P. Graham ◽  
James VanDerslice

Many communities along the US-México border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (>10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.


Author(s):  
Roohi Rawat ◽  
A. R. Siddiqui

Clean and safe drinking water is important for the overall health and wellbeing; therefore, access to safe potable drinking water is one of the basic amenities of humankind, especially in urban areas with high consumption pattern of the large population inhabiting these spaces. Among the various sources of water, groundwater is considered to be the safest source of drinking water. However, due to rapid industrialization and population growth, the groundwater resources are getting polluted with harmful contaminants. These contaminants can be chemical or microbiological and cause various health problems. According to the World Health Organization (WHO), about 80 percent of all diseases in the world are directly or indirectly related to the contamination of water. Water in its natural state is colorless, odorless, and free from pathogens with pH in the range of 6.5–8.5. This water is termed as “potable water.” In the present study, the researchers have made an attempt to assess the physiochemical characteristics of drinking water quality in Allahabad and the effect of these contaminants on the health of the consumers. A comparison of the parameter standards as per the Bureau of Indian Standards (BIS) (ISI, Indian standard specification for drinking water (IS10500). New Delhi: ISI, 1983 ) and the WHO (Guidelines for drinking water quality (Vol. 1). Geneva: WHO, 1984 ) have also been made to understand the national and global benchmarks. With the help of the standards of various parameters given by these organizations, the assessment of water quality of samples from various locations in Allahabad has been done.


2008 ◽  
Vol 33 (2) ◽  
pp. 189-201 ◽  
Author(s):  
Abbas Al-Omari ◽  
Manar Fayyad ◽  
Ahmad Jamrah

1996 ◽  
Vol 54 (5) ◽  
pp. 511-516 ◽  
Author(s):  
Robert E. Quick ◽  
Linda V. Venczel ◽  
Nancy H. Bean ◽  
Anita K. Highsmith ◽  
Erika H. De Hannover ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0218698
Author(s):  
Alexandra Bastaraud ◽  
Emeline Perthame ◽  
Jean-Marius Rakotondramanga ◽  
Jackson Mahazosaotra ◽  
Noro Ravaonindrina ◽  
...  

Author(s):  
D. Daniel ◽  
Arnt Diener ◽  
Jack van de Vossenberg ◽  
Madan Bhatta ◽  
Sara J. Marks

Accurate assessments of drinking water quality, household hygenic practices, and the mindset of the consumers are critical for developing effective water intervention strategies. This paper presents a microbial quality assessment of 512 samples from household water storage containers and 167 samples from points of collection (POC) in remote rural communities in the hilly area of western Nepal. We found that 81% of the stored drinking water samples (mean log10 of all samples = 1.16 colony-forming units (CFU)/100 mL, standard deviation (SD) = 0.84) and 68% of the POC samples (mean log10 of all samples = 0.57 CFU/100 mL, SD = 0.86) had detectable E. coli. The quality of stored water was significantly correlated with the quality at the POC, with the majority (63%) of paired samples showing a deterioration in quality post-collection. Locally applied household water treatment (HWT) methods did not effectively improve microbial water quality. Among all household sanitary inspection questions, only the presence of livestock near the water storage container was significantly correlated with its microbial contamination. Households’ perceptions of their drinking water quality were mostly influenced by the water’s visual appearance, and these perceptions in general motivated their use of HWT. Improving water quality within the distribution network and promoting safer water handling practices are proposed to reduce the health risk due to consumption of contaminated water in this setting.


2013 ◽  
Vol 368-370 ◽  
pp. 2034-2037 ◽  
Author(s):  
Yu Nan Gao ◽  
Xiang Yu Tang ◽  
Jin Xiang Fu ◽  
Shui Liu

The numbers of index of Chinese standards for drinking water quality increased from 17 by the Health Regulation for Drinking water promulgated 1959 to106 by the current Standards for Drinking Water Quality (GB5749-2006). The Standard has been developed at the same pace with the world. However, there were some hysteretic problems in the process of standards implementation due to the detection technique. The article was aimed at making suggestions on improving detection capability and testing equipment, making programs on the technical personnel and the regional differences. The present research results will lay the foundation for the implementation of Chinese standards for drinking water quality.


Sign in / Sign up

Export Citation Format

Share Document