scholarly journals Ammonium recovery from process water of digested sludge dewatering by membrane contactors

2020 ◽  
Vol 15 (1) ◽  
pp. 84-91
Author(s):  
L. Richter ◽  
M. Wichern ◽  
M. Grömping ◽  
U. Robecke ◽  
J. Haberkamp

Abstract Membrane contactors are a promising alternative for nitrogen removal and recovery from process water compared to other physicochemical and biological sidestream treatment processes. Münster wastewater treatment plant (WWTP) is the first municipal WWTP in Germany operating a full-scale membrane contactor system to improve the nitrogen elimination and recovery efficiency. Factors influencing the operation and membrane performance are investigated in an accompanying research project. Additional operational aspects of the applied membrane modules are investigated in detail using a bench-scale membrane contactor. First results of the full-scale application demonstrate a high nitrogen removal efficiency of >95%.

2009 ◽  
Vol 4 (1) ◽  
Author(s):  
G. Wandl ◽  
H. Schaar ◽  
M. Papp ◽  
K. Svardal

The Main Wastewater Treatment Plant of Vienna had to be extended to guarantee sufficient nitrogen removal. After intensive evaluation studies a two-stage activated sludge system was chosen for the plant-extension. Due to the very small specific reactor tank volume of two-stage treatment plants in comparison with low loaded single-stage plants internal cycles had to be applied to ensure sufficient nitrogen removal. Starting in the year 2000 the plant extension was finished by the beginning of 2005 and the extended plant went into operation in spring. The Austrian effluent standards had to be fulfilled by December 2005. This paper presents a description of the plant layout and gives an overview of the operating results of the first two years of full scale operation. Mass balances were used to evaluate the pathways of nitrogen removal. The results confirmed the expected flexibility of the chosen concept; nitrogen elimination did not decrease although the effluent recirculation that has been implemented to ensure sufficient nitrogen removal efficiency especially during winter had been reduced markedly due to energy reasons. The treatment efficiency that was observed at pilot plant investigations was clearly exceeded.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2002 ◽  
Vol 46 (6-7) ◽  
pp. 347-354 ◽  
Author(s):  
E. Choi ◽  
Y. Eum

This study was conducted with an influent containing about 20% solids, obtainable from scraper type separation resulting in about 40 g/L TCOD and 5.5 g/L TKN, to find an optimum operating condition for nitrogen removal. Both laboratory scale reactors and a full scale treatment plant removed 80 to 90% nitrogen by biological means up to 35°C with 10% by ammonia stripping. The full scale plant however was operated at 35 to 45°C, and at 45°C, 30% nitrogen was removed by biological means, 50% by ammonia stripping, 14% by chemical coagulation and 6% by activated carbon adsorption, respectively. Struvite formation could not be observed at 30°C or higher. Nitrite nitrification and denitrification could save about 35% in tank volume and 50% in carbon requirements at 25°C, respectively. For a complete denitrification with a proper temperature, the influent TCOD/TKN ratio must exceed 6 with oxic/total reactor volume ratio of 0.5. The influent TCOD level or organic load should be lower so as not to increase the reactor temperature above 35°C and avoid nitrification inhibition. The estimated optimum nitrogen loading rates were 0.15 for summer and 0.23 kgTKN/m3/d for winter, respectively. With a cooling facility, the nitrogen loads could be increased to 0.35 kgTKN/m3/d equivalent to an organic loading rate of 2.5 kgCOD/m3/d.


Fibers ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Margarita Kostyanaya ◽  
Stepan Bazhenov ◽  
Ilya Borisov ◽  
Tatiana Plisko ◽  
Vladimir Vasilevsky

Olefin/paraffin separation is an important technological process. A promising alternative to conventional energy-consuming methods is employment of gas-liquid membrane contactors. In the present work, the membranes used were polysulfone (PSf) asymmetrical porous hollow fibers fabricated via the NIPS (non-solvent induced phase separation) technique in the free spinning mode. The surface of the fine-pored selective layer from the lumen side of the fibers was modified by layer-by-layer deposition of perfluorinated acrylic copolymer Protect Guard® in order to hydrophobized the surface and to avoid penetration of the liquid absorbent in the porous structure of the membranes. The absorbents studied were silver salts (AgNO3 and AgBF4) solutions in five ionic liquids (ILs) based on imidazolium and phosphonium cations. The membranes were analyzed through gas permeance measurement, SEM and dispersive X-ray (EDXS). Contact angle values of both unmodified and modified membranes were determined for water, ethylene glycol, ILs and silver salts solutions in ILs. It was shown that the preferable properties for employment in membrane contactor refer to the PSf hollow fiber membranes modified by two layers of Protect Guard®, and to the absorbent based on 1 M AgNO3 solution in 1-ethyl-3-methylimidazolium dicyanamide. Using the membrane contactor designed, ethylene/ethane mixture (80/20) separation was carried out. The fluxes of both components as well as their overall mass transport coefficients (MTC) were calculated. It was shown that the membrane absorption system developed provides absorption of approx. 37% of the initial ethylene volume in the mixture. The overall MTC value for ethylene was 4.7 GPU (gas permeance unit).


1990 ◽  
Vol 22 (1-2) ◽  
pp. 239-250 ◽  
Author(s):  
B. Andersson

A test program for the use of fixed bed processes in systems for nitrogen removal at an advanced sewage treatment plant is described. Results from studies on nitrification in a full scale trickling filter plant with different filter depths and at different wastewater temperatures are presented. Results from full scale experiments with denitrification/nitrification in a retrofitted activated sludge plant are also presented. The effect of an aerated submerged fixed bed in the aeration basin on nitrification was investigated. Observations of the biofilm formed on the fixed bed were made in microscope.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 127-135 ◽  
Author(s):  
M. Bonhomme ◽  
F. Rogalla ◽  
G. Boisseau ◽  
J. Sibony

To upgrade existing activated sludge treatment plants, different techniques that would remove an important flux of nitrogen rapidly on a great number of units were investigated. Nitrification with conventional activated sludge systems requires considerable multiplication of tankage volume. The necessary investment and space is not always available, especially since many older plants are now in urbanized areas. To lower the nitrogen load in receiving water, the first priority should be to obtain partial nitrogen removal with existing plants, using methods that are simple to adapt.Three techniques were tested on large scale: submerged elements in aeration basin to add fixed biomass, contact stabilisation that allows a higher sludge age in the same tankage volume, and adding submerged biotower packings as a tertiary aeration stage. In a full scale unit (4000 m3/d), one complete section of the plant fitted with biofilter packing was operated in parallel with a similar unmodified section as reference. The volume occupied by the fixed beds was varied between 20 and 40 % of the tank. The submerged elements improved removal efficiency, to maintain effluent quality at higher loadings or obtain lower residual pollution values in existing plants. The biofilm evolution and the hydraulic behaviour of the packing was followed. No significant change in sludge settleability was observed, but fixed biomass addition reduced sludge production because of a lower overall mass loading. The resulting higher sludge age allowed the ammonia oxidizers to remain in the mixed population beyond usual F/M limits, but no installation of nitrifiers on the support media could be observed. To verify the limits of immersed plastic surfaces for nitrification, an aerated column was fed with effluent of a highly loaded activated sludge plant. In opposition to carriers submerged in mixed liquor, nitrifier attachment was obtained, and COD and SS removal for effluent polishing was achieved. With a carbon loading exceeding 1,5 kg COD/m3 d, a maximum oxidation rate of 0,4 kg N-NH4/m3 d could be obtained. A pilot unit was tested to assess the potential volume reduction for nitrogen elimination by contact stabilisation. This configuration stores the highly concentrated return sludge in a reaeration basin, and keeping only the minimum detention time in the contact basin to obtain nitrification. Also, an increased carbon load in the contact basin enhances denitrification. For urban wastewaters with a COD/N ratio of about 10, complete oxidation and partial removal of nitrogen were obtained with a volume loading of 1,5 kg COD/m3 d. Nitrogen removal rates of 0,15 kg N/m3 d were measured both in the anoxic and the aerobic part of the contact basin. The contact stabilisation mode was then tested on full scale combined with submerged biomass carriers. A consistant nitrogen elimination of 50 % was obtained with aeration detention times of about 4 hours.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 93-104 ◽  
Author(s):  
Bengt Andersson ◽  
Björn Rosén

Nitrogen removal is now required by the Swedish parliament. The new requirements will be valid before 1995 and in some cases before 1992. A comprehensive development program, mostly in full scale at about 35 municipal sewage treatment plants, has been started to meet the new demands. In order to co-ordinate all activities, a National Nitrogen Project with representatives from authorities and municipalities has been formed. The general ambition is to meet the demand by process development, using existing volumes rather than to invest in civil works. A Swedish concept has appeared, which in most cases has served as a guideline for the development program. The basic principles are to decrease the load on the biological process by pre-precipitation, to utilize the remaining organic content in the wastewater in a pre-denitrification system, to increase the active biomass in the biological system and to use a two-sludge system with post-denitrification. In this paper, some experiences from the activities in Sweden are discussed and exemplified with results mainly from Falkenberg, Malmö and Norrköping. The treatment plant in Falkenberg was the first to introduce biological nitrogen removal in Sweden. A pre-denitrification system has been in operation since May 1983 with good results. Comprehensive full-scale and pilot tests are in operation at the Sjölunda and Klagshamn sewage treatment plants in Malmö. Special interests have been paid to studies on different applications of fixed film technology. The plant in Norrköping is operated with pre-precipitation followed by combined pre- and post-denitrification.


2020 ◽  
Vol 81 (9) ◽  
pp. 2033-2042 ◽  
Author(s):  
Ivelina Dimitrova ◽  
Agnieszka Dabrowska ◽  
Sara Ekström

Abstract Partial nitritation and anaerobic ammonium oxidation (PNA) is a useful process for the treatment of nitrogen-rich centrate from the dewatering of anaerobically digested sludge. A one-stage PNA moving bed biofilm reactor (MBBR) was started up without inoculum at Klagshamn wastewater treatment plant, southern Sweden. The reactor was designed to treat up to 200 kgN d−1, and heated dilution water was used during start-up. The nitrogen removal was >80% after 111 days of operation, and the nitrogen removal rate reached 1.8 gN m−2 d1 at 35 °C. The start-up period of the reactor was comparable to that of inoculated full-scale systems. The operating conditions of the system were found to be important, and online control of the free ammonia concentration played a crucial role. Ex situ batch activity tests were performed to evaluate process performance.


Sign in / Sign up

Export Citation Format

Share Document