Removal of natural organic matter and trihalomethane formation potential in a full-scale drinking water treatment plant

2013 ◽  
Vol 13 (4) ◽  
pp. 1099-1108 ◽  
Author(s):  
Ekaterina Vasyukova ◽  
René Proft ◽  
Johanna Jousten ◽  
Irene Slavik ◽  
Wolfgang Uhl

A multidisciplinary approach was applied in this work to characterise natural organic matter and evaluate the performance of a full-scale waterworks treating organic-rich surface water. It was shown that the combination of the treatment processes considered efficiently removed the dissolved organic matter, including its specific fractions. Most of the dissolved organic carbon and nitrogen (DOC and DON), biodegradable DOC and DON, as well as assimilable organic carbon were removed by coagulation/sedimentation. However, the coagulation process was not likely to be optimised for the removal of all molecular weight compounds. The breakdown of high molecular weight compounds into others of low molecular weight, as well as the production of biodegradable organic matter during ozonation, proved to enhance their removal efficiency by subsequent biological activated carbon filtration. The specific trihalomethane formation potential decreased during treatment, indicating a decrease in reactivity of DOC with chlorine across the treatment train. Fractionation experiments demonstrated that high and medium molecular weight organics were likely to be the main precursors for the formation of trihalomethanes. However, other disinfection by-products (such as haloacetic acids) should also be controlled, as the chlorine demand pattern did not necessarily follow that of trihalomethane formation.

2013 ◽  
Vol 51 (31-33) ◽  
pp. 6288-6298 ◽  
Author(s):  
Jei-cheol Jeon ◽  
Chang-Hyun Jo ◽  
Ilhwan Choi ◽  
Soon-Buhm Kwon[a] Ennkyung Jang ◽  
Tae-Mun Hwang

2020 ◽  
pp. 9-15
Author(s):  
Jelena Molnar-Jazic ◽  
Marijana Kragulj-Isakovski ◽  
Aleksandra Tubic ◽  
Tamara Apostolovic ◽  
Malcolm Watson ◽  
...  

This work presents results from a pilot-scale drinking water treatment plant used to investigate the performance of ozone oxidation and granulated activated carbon (GAC) adsorption in removing natural organic matter (NOM) and specific organic micropollutants from groundwater. The investigated groundwater has a relatively low NOM content (1.83?1.01 mg C/L total organic carbon, TOC). Using gas chromatography/mass spectrometry (GC/MS) screening analysis, a variety of different organic compounds were identified, including benzophenone, 2-phenoxyethanol, butylated hydroxytoluene and benzoic acid, all contaminants of emerging concern (CEC) identified by NORMAN. The application of the ozonation process resulted in a 4-20% NOM reduction, based on the TOC values. Estimated removal of CECs by ozone increased with increasing ozone dose (up to 1.0 g O3/m3) and was in the range 24-70%. Adsorption on GAC further improves total NOM and CECs removal compared to the ozonation alone. Combined use of ozone and GAC provides up to 16-33% TOC reduction as well as 70-82% CECs removal. UV absorbance values at 254 nm can serve as an indicator of aromatic carbon content in water, and were significantly reduced after ozonation and GAC filtration (by up to 50%). Among the CECs investigated, benzophenone was the most prone to oxidation/adsorption treatment. In addition to the naturally present organic matter, CECs detected can serve as indicators of anthropogenic pollution which may alter drinking water quality. Tracking their behaviour during treatment allows assessment of the efficiency of the technological line and optimization of the oxidation process in the case of groundwater pollution by infiltration.


2008 ◽  
Vol 58 (6) ◽  
pp. 1173-1179 ◽  
Author(s):  
Yeow Chong Soh ◽  
Felicity Roddick ◽  
John van Leeuwen

Natural Organic Matter (NOM) from Myponga Reservoir, South Australia, was separated into four organic fractions based on their hydrophobic and hydrophilic properties using a sequence of non-ionic and ionic resins. NOM fractions were isolated for the purpose of determining the impact of alum coagulation on removal of these fractions in conventional water treatment, and their potential as precursors in the formation of disinfection by-products (DBP) and in supporting microbial growth. The NOM comprised VHA (very hydrophobic acids), SHA (slightly hydrophobic acids), CHA (charged hydrophilics) and NEU (neutral hydrophilics) fractions. These fractions were then jar tested with alum using low (50 mg/L), operational (100 mg/L) and very high (200 mg/L) doses to assess the removal capacities for these fractions in a conventional treatment plant. High-performance size exclusion chromatography-UV-DOC (HPSEC-UV-DOC) revealed that alum removed more of the hydrophobic and higher molecular weight components of NOM, but less of the NEU fraction and lower molecular weight components of NOM. Determination of biodegradable dissolved organic carbon (BDOC) indicated that the NEU fraction had the highest biodegradability, followed by the CHA, SHA and VHA fractions. The VHA fraction had the highest total-trihalomethane formation potential (t-THMFP), followed by NEU, SHA and CHA. The NOM not removed by alum coagulation had the potential to support microbial growth (NEU fraction), and disinfection by-product (DBP) formation (VHA and NEU fractions). To obtain treated water with lower overall residual NOM, other treatment methods would need to be applied in addition to alum coagulation in order to reduce the concentration of the neutral fraction.


Sign in / Sign up

Export Citation Format

Share Document