Analysis of water quality of selected irrigation water sources in northern Ghana

2017 ◽  
Vol 18 (4) ◽  
pp. 1308-1317 ◽  
Author(s):  
Davie Kadyampakeni ◽  
Richard Appoh ◽  
Jennie Barron ◽  
Enoch Boakye-Acheampong

Abstract Small-scale irrigation continues to cushion the food security gap in sub-Saharan Africa. Irrigation is largely governed by water availability, soil type and crop water requirements, among other factors. Thus, a study was conducted to assess the suitability of various water sources for irrigation in northern Ghana. Specifically, the study sought to assess quality of water sources in the Savelugu, Kasena-Nankana East, and Nabdam districts for small-scale irrigation development. The water quality parameters used were: pH, electrical conductivity (ECw), sodium adsorption ratio (SAR), sodium percent (Na%), soluble sodium percentage (SSP), magnesium adsorption ratio (MAR), Kelley's ratio (KR), total hardness (TH), chloride (Cl), Escherichia coli, and fecal coliforms. While we found most of the irrigation water sources, including small reservoirs, dams, wells and rivers suitable, few unsuitable irrigation water sources were also identified. Overall, the study found that opportunities for scaling small-scale irrigation exist in all the sites. The knowledge generated from this study will guide irrigation water use, and agricultural policy for sustainable smallholder irrigation development in the region.

2004 ◽  
Vol 7 (4) ◽  
pp. 652-663 ◽  
Author(s):  
KW Easter ◽  
S Zekri

This paper examines the reform of water and irrigation management in Africa and compares it with similar reforms in Asia.  Several things are evident from the review.  First, Sub-Saharan Africa (SSA) is at an earlier stage of irrigation development and reform than Asia.  Second, the articulated need for reform is much stronger in Asia than it is in SSA.  Third, the productivity of small-scale irrigated farms is significantly lower in SSA compared to Asia.  Thus any irrigation investment strategy in SSA should be different from Asia and focus on increasing small-farm productivity as well as small-scale irrigation projects.  Finally, all direct government irrigation investments should be done jointly with decisions regarding the type of project management.


2015 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Shashi Kant ◽  
Y.V. Singh ◽  
Lokesh Kumar Jat ◽  
R. Meena ◽  
S.N. Singh

<p>In sustainable groundwater study, it is necessary to assess the quality of groundwater in terms of irrigation purposes. The present study attempts to assess the groundwater quality through Irrigation Water Quality Index (IWQI) in hard-rock aquifer system and sustainable water use in Lahar block, Bhind of district, Madhya Pradesh, India. The quality of ground water in major part of the study area is generally good. In order to understand the shallow groundwater quality, the water samples were collected from 40 tube wells irrigation water. The primary physical and chemical parameters like potential Hydrogen (pH), Total Dissolved Solids (TDS), calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), bicarbonate (HCO<sub>3</sub><sup>-</sup>), carbonate (CO<sub>3</sub><sup>2-</sup>), chloride (Cl<sup>-</sup>), and nitrate (NO<sub>3</sub><sup>-</sup>) were analyzed for (irrigation water quality index ) IWQI. The secondary parameters of irrigation groundwater quality indices such as Sodium Adsorption Ratio (SAR), Sodium Soluble Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), and Kellies Ratio (KR) were also derived from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (82.5%+15.0%) indicate that slightly unsustainable to good quality of ground water. Due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.</p>


Water SA ◽  
2015 ◽  
Vol 41 (5) ◽  
pp. 691
Author(s):  
Tatenda G Chirenda ◽  
Sunitha C Srinivas ◽  
R Tandlich

2016 ◽  
Author(s):  
John Gowing ◽  
Geoff Parkin ◽  
Nathan Forsythe ◽  
David Walker ◽  
Alemseged Tamiru Haile ◽  
...  

Abstract. There is a need for an evidence-based approach to identify how best to support development of groundwater for small scale irrigation in sub-Saharan Africa (SSA). We argue that it is important to focus this effort on shallow groundwater resources which are most likely to be used by poor rural communities in SSA. However, it is important to consider constraints, since shallow groundwater resources are likely to be vulnerable to over-exploitation and climatic variability. We examine here the opportunities and constraints and draw upon evidence from Ethiopia. We present a methodology for assessing and interpreting available shallow groundwater resources and argue that participatory monitoring of local water resources is desirable and feasible. We consider possib le models for developing distributed small-scale irrigation and assess its technical feasibility. Because of power limits on water lifting and also because of available technology for well construction, groundwater at depths of 50 m or 60 m cannot be regarded as easily accessible for small-scale irrigation. We therefore adopt a working definition of shallow groundwater as < 20 m depth. This detailed case study in the Dangila woreda in Ethiopia explores the feasibility of exploiting shallow groundwater for small-scale irrigation over a range of rainfall conditions. Variability of rainfall over the study period (9 % to 96 % probability of non-exceedance) does not translate into equivalent variability in groundwater levels and river baseflow. Groundwater levels, monitored by local communities, persist into the dry season to at least the end of December in most shallow wells, indicating that groundwater is available for irrigation use after the cessation of the wet season. Arguments historically put forward against the promotion of groundwater use for agriculture in SSA on the basis that aquifers are unproductive and irrigation will have unacceptable impacts on wetlands and other groundwater-dependent ecosystems appear exaggerated. It would be unwise to generalise from this case study to the whole of SSA, but useful insights into the wider issues are revealed by the case study approach. We believe there is a case for arguing that shallow groundwater in sub-Saharan Africa represents a neglected opportunity for sustainable intensification of small-scale agriculture.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2537 ◽  
Author(s):  
Mohamed K. Abdel-Fattah ◽  
Sameh Kotb Abd-Elmabod ◽  
Ali A. Aldosari ◽  
Ahmed S. Elrys ◽  
Elsayed Said Mohamed

Water scarcity and suitable irrigation water management in arid regions represent tangible challenges for sustainable agriculture. The current study aimed to apply multivariate analysis and to develop a simplified water quality assessment using principal component analysis (PCA) and the agglomerative hierarchical clustering (AHC) technique to assess the water quality of the Bahr Mouise canal in El-Sharkia Governorate, Egypt. The proposed methods depended on the monitored water chemical composition (e.g., pH, water electrical conductivity (ECiw), Ca2+, Mg2+, Na+, K+, HCO3−, Cl−, and SO42−) during 2019. Based on the supervised classification of satellite images (Landsat 8 Operational Land Imager (OLI)), the distinguished land use/land cover types around the Bahr Mouise canal were agriculture, urban, and water bodies, while the dominating land use was agriculture. The water quality of the Bahr Mouise canal was classified into two classes based on the application of the irrigation water quality index (IWQI), while the water quality was classified into three classes using the PCA and AHC methods. Temporal variations in water quality were investigated, where the water qualities in winter, autumn, and spring (January, February, March, April, November, and December) were classified as class I (no restrictions) based on IWQI application, and the water salinity, sodicity, and/or alkalinity did not represent limiting factors for irrigation water quality. On the other hand, in the summer season (May, June, July, August, and October), the irrigation water was classified as class II (low restrictions); therefore, irrigation processes during summer may lead to an increase in the alkalinity hazard. The PCA classifications were compared with the IWQI results; the PCA classifications had similar assessment results during the year, except in September, while the water quality was assigned to class II using the PCA method and class I by applying the IWQI. Furthermore, the normalized difference vegetation index (NDVI) around the Bahr Mouise canal over eight months and climatic data assisted in explaining the fluctuations in water quality during 2019 as a result of changing the crop season and agriculture management. Assessments of water quality help to conserve soil, reduce degradation risk, and support decision makers in order to obtain sustainable agriculture, especially under water irrigation scarcity and the limited agricultural land in such an arid region.


Sign in / Sign up

Export Citation Format

Share Document