scholarly journals Characteristics and causes of groundwater dynamic changes in Naoli River Plain, Northeast China

2020 ◽  
Vol 20 (7) ◽  
pp. 2603-2615
Author(s):  
Du Xinqiang ◽  
Chang Kaiyang ◽  
Lu Xiangqin

Abstract Identification of groundwater dynamic behavior and its mechanism is the basis of groundwater protection and management. In Naoli River Plain (NRP), an important agricultural cultivation base and wetland in China, the trend of groundwater dynamic change is complicated under natural climate and human activities. Based on the methods of the Mann–Kendall test, Sen's slope estimation and correlation analysis, groundwater hydrodynamic characteristics and causes were identified. Within 68 observation wells from year 2000 to 2015, there are 28, 30 and 10 wells, accounting for 41.2%, 44.1% and 14.7%, that belong to rising, declining and relatively stable change trends, respectively. The average groundwater rising and declining rates are 0.19 m/year and 0.26 m/year respectively. The groundwater level was increasing or stable in the areas where there was no intensive groundwater exploitation, such as wetland, mountain foregrounds, residential lands and dry farmland. The groundwater level was declining obviously in the paddy fields with groundwater as the source of irrigation water. Thus, the groundwater dynamics in NRP were affected both by human activities of groundwater irrigation and climate change. The carrying capacity of groundwater for agricultural cultivation has been overloaded in some areas, and a conjunctive utilization of surface water and groundwater is needed urgently in NRP.

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2869
Author(s):  
Xiaohui Pan ◽  
Weishi Wang ◽  
Tie Liu ◽  
Yue Huang ◽  
Philippe De Maeyer ◽  
...  

In the past few decades, the shrinkage of the Aral Sea is one of the biggest ecological catastrophes caused by human activity. To quantify the joint impact of both human activities and climate change on groundwater, the spatiotemporal groundwater dynamic characteristics in the Amu Darya Delta of the Aral Sea from 1999 to 2017 were analyzed, using the groundwater level, climate conditions, remote sensing data, and irrigation information. Statistics analysis was adopted to analyze the trend of groundwater variation, including intensity, periodicity, spatial structure, while the Pearson correlation analysis and principal component analysis (PCA) were used to quantify the impact of climate change and human activities on the variabilities of the groundwater level. Results reveal that the local groundwater dynamic has varied considerably. From 1999 to 2002, the groundwater level dropped from −189 cm to −350 cm. Until 2017, the groundwater level rose back to −211 cm with fluctuation. Seasonally, the fluctuation period of groundwater level and irrigation water was similar, both were about 18 months. Spatially, the groundwater level kept stable within the irrigation area and bare land but fluctuated drastically around the irrigation area. The Pearson correlation analysis reveals that the dynamic of the groundwater level is closely related to irrigation activity within the irrigation area (Nukus: −0.583), while for the place adjacent to the Aral Sea, the groundwater level is closely related to the Large Aral Sea water level (Muynak: 0.355). The results of PCA showed that the cumulative contribution rate of the first three components exceeds 85%. The study reveals that human activities have a great impact on groundwater, effective management, and the development of water resources in arid areas is an essential prerequisite for ecological protection.


Author(s):  
Dong Liu ◽  
Wenting Liu ◽  
Tianqi Luo

Along with the population increasing and social economic developing rapidly, the groundwater resource is affected by human activities seriously. In order to achieve optimal local allocation of water resources and promotion of local economic development, a suitable method for measuring the effect degree of human activities on groundwater resource system is very important. In this paper, regarding Hongxinglong Administration of Heilongjiang Agricultural Reclamation in China as the study area, the comprehensive assessment system to analysis the influence of human activities on groundwater level change with eight evaluated indicators closely related to the amount of groundwater exploitation is established by applying variable fuzzy optimization model. According to relative superiority, the function of effect degree index to evaluate the impact situation is constructed. The results in 2012 show that the human activities on Farm Youyi have the strongest impact on groundwater level variation, while Farm Beixing weakest. Comparing the results from 2003 to 2012, the trend of most effect degree indices reveals decrease by some effective measures. However, there are four farms whose human activities have a stronger influence on groundwater table.


Author(s):  
Z. Lin ◽  
W. Lin ◽  
L. Pengfei

Abstract. When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model – MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001–2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge–discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.


2010 ◽  
Vol 113-116 ◽  
pp. 1025-1030
Author(s):  
Juan Feng ◽  
Guan Qun Liu ◽  
Quan Sheng Zhao

In view of this major environmental geology problem in Dezhou City that continuous overexploiting of deep groundwater has caused he rapidly-expansion of groundwater drop funnel in recent years, the dynamic change of deep groundwater in Dezhou City was systematically analyzed as well as the evolution and development of hydrodynamic field and deep drawdown cone in temporal and spatial variation was simulated by the application of the numerical Model. On the basis of hydrogeological conditions generalized in this region, Visual MODFLOW software was applied to build mathematical model of groundwater and stimulate the seepage field of groundwater. It predicted the expansion of groundwater drop funnel and the change of underground water level under the conditions of exploitation situation and different designed exploiting volume by the model built. The depth reduction and variation of groundwater under different design schemes for pumping rate were argued by contrast analysis of the calculated results. The forecasting result under the current situation of groundwater exploitation indicates that the drawdown of water level would increase more with the continuous exploitation when the exploiting volume of current situation is 2047×104m3/a. When (time)is equal to 5a(2013), (the decline depth of groundwater) is at 4.81~22.65m and the annual deceleration is at 0.96~4.53m/a. When is equal to 10a(2018), is at 14.32~32.87m as well as the annual deceleration is at 1.43~3.29m/a, and then the average elevation of central water level of funnel is -118.06m. The forecasting results under different design schemes for exploiting volume showed that the groundwater level would continuously decrease if the present exploiting quantity is still kept at 2047×104m3/a, which the depth of central groundwater level of funnel is 144.95m in 2012. While exploiting quantity cuts down to 1950×104m3/a, the groundwater level still constantly decreases, which the depth of central groundwater level of funnel is 133.90m in 2012. Only when exploiting quantity further cut down to 1750×104m3/a, the groundwater level would never descend after 2011, and then it would begin ascending, which the depth of central groundwater level of funnel would be 120.25m in 2012. According to the model stimulation of groundwater flow and the results of water balance analysis, the exploitation project was proposed that the drawdown cone would not further expand. The key measure to protect deep groundwater resources in this region is scientific planning of underground water, and ensuring that The allowable exploiting volume in this region should be kept at 1750×104m3/a in order that it can reach a benign circle with the balance of exploitation and supplementation.


Author(s):  
Dong Liu ◽  
Wenting Liu ◽  
Tianqi Luo

Along with the population increasing and social economic developing rapidly, the groundwater resource is affected by human activities seriously. In order to achieve optimal local allocation of water resources and promotion of local economic development, a suitable method for measuring the effect degree of human activities on groundwater resource system is very important. In this paper, regarding Hongxinglong Administration of Heilongjiang Agricultural Reclamation in China as the study area, the comprehensive assessment system to analysis the influence of human activities on groundwater level change with eight evaluated indicators closely related to the amount of groundwater exploitation is established by applying variable fuzzy optimization model. According to relative superiority, the function of effect degree index to evaluate the impact situation is constructed. The results in 2012 show that the human activities on Farm Youyi have the strongest impact on groundwater level variation, while Farm Beixing weakest. Comparing the results from 2003 to 2012, the trend of most effect degree indices reveals decrease by some effective measures. However, there are four farms whose human activities have a stronger influence on groundwater table.


2019 ◽  
Vol 2 (1) ◽  
pp. 25-44 ◽  
Author(s):  
S. Mohanasundaram ◽  
G. Suresh Kumar ◽  
Balaji Narasimhan

Abstract Groundwater level prediction and forecasting using univariate time series models are useful for effective groundwater management under data limiting conditions. The seasonal autoregressive integrated moving average (SARIMA) models are widely used for modeling groundwater level data as the groundwater level signals possess the seasonality pattern. Alternatively, deseasonalized autoregressive and moving average models (Ds-ARMA) can be modeled with deseasonalized groundwater level signals in which the seasonal component is estimated and removed from the raw groundwater level signals. The seasonal component is traditionally estimated by calculating long-term averaging values of the corresponding months in the year. This traditional way of estimating seasonal component may not be appropriate for non-stationary groundwater level signals. Thus, in this study, an improved way of estimating the seasonal component by adopting a 13-month moving average trend and corresponding confidence interval approach has been attempted. To test the proposed approach, two representative observation wells from Adyar basin, India were modeled by both traditional and proposed methods. It was observed from this study that the proposed model prediction performance was better than the traditional model's performance with R2 values of 0.82 and 0.93 for the corresponding wells' groundwater level data.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mara Meggiorin ◽  
Giulia Passadore ◽  
Silvia Bertoldo ◽  
Andrea Sottani ◽  
Andrea Rinaldo

The social, economic, and ecological importance of the aquifer system within the Bacchiglione basin (Veneto, IT) is noteworthy, and there is considerable disagreement among previous studies over its sustainable use. Investigating the long-term quantitative sustainability of the groundwater system, this study presents a statistical methodology that can be applied to similar cases. Using a combination of robust and widely used techniques, we apply the seasonal Mann–Kendall test and the Sen’s slope estimator to the recorded groundwater level timeseries. The analysis is carried out on a large and heterogeneous proprietary dataset gathering hourly groundwater level timeseries at 79 control points, acquired during the period 2005–2019. The test identifies significant decreasing trends for most of the available records, unlike previous studies on the quantitative status of the same resource which covered the domain investigated here for a slightly different period: 2000–2014. The present study questions the reason for such diverging results by focusing on the method’s accuracy. After carrying out a Fourier analysis on the longest available timeseries, for studies of groundwater status assessment this work suggests applying the Mann–Kendall test to timeseries longer than 20 years (because otherwise the analysis would be affected by interannual periodicities of the water cycle). A further analysis of two 60-year-long monthly timeseries between 1960 and 2020 supports the actual sustainable use of the groundwater resource, the past deployment of the groundwater resources notwithstanding. Results thus prove more reliable, and meaningful inferences on the longterm sustainability of the groundwater system are possible.


Ground Water ◽  
2018 ◽  
Vol 57 (2) ◽  
pp. 320-328 ◽  
Author(s):  
Chuanglin Fang ◽  
Siao Sun ◽  
Shaofeng Jia ◽  
Yuanyuan Li

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3225
Author(s):  
Mengyao Jiang ◽  
Shuntao Xie ◽  
Shuixian Wang

Increased groundwater extraction leads to the decrease of the extent of wetlands due to the implementation of a water-saving transformation project in an arid irrigation area. The application of integrated mitigation tools and strategies in China have increasing significance. In this study, an integrated approach (SWAT-MODFLOW) was followed; it is based on a soil and water assessment tool (SWAT) coupled with a modular three-dimensional finite difference groundwater model (MODFLOW). Recharge and evaporation values were estimated by SWAT and were then used to simulate groundwater in a MODFLOW model. Calibration (over the years 2000–2010) and validation (over the years 2010–2016) were performed, based on observed groundwater-level data; results showed that the combined SWAT-MODFLOW provides more accurate simulation and prediction of the dynamic changes of surface water and groundwater in irrigation areas than results from individual MODFLOW models. This method was applied to the Yanqi Basin, which is one of the most appropriate arid agricultural basins for modeling lake wetland and groundwater in China. The correlation coefficients (R2) between the simulated and real groundwater level are 0.96 and 0.91 in SWAT-MODFLOW and MODFLOW, respectively. With the gradual increase in the extraction to 248%, 0.62 × 108 m3 of groundwater discharged into the lake became −2.25 × 108 m3. The lake level drops 1.3 m compared with the current year, when the groundwater exploitation increases by 10 × 108 m3/year. Overall, the results of the coupling model offer scientific evidence for agricultural water management and lake recovery, so as to enhance the water use coordination.


Author(s):  
Ya Sun ◽  
Shiguo Xu ◽  
Qin Wang ◽  
Suduan Hu ◽  
Guoshuai Qin ◽  
...  

With a shifting climate pattern and enhancement of human activities, coastal areas are exposed to threats of groundwater environmental issues. This work takes the eastern coast of Laizhou Bay as a research area to study the response of a coastal groundwater system to natural and human impacts with a combination of statistical, hydrogeochemical, and fuzzy classification methods. First, the groundwater level dynamics from 1980 to 2017 were analyzed. The average annual groundwater level dropped 13.16 m with a descent rate of 0.379 m/a. The main external environmental factors that affected the groundwater level were extracted, including natural factors (rainfall and temperature), as well as human activities (irrigated area, water-saving irrigated area, sown area of high-water-consumption crops, etc.). Back-propagation artificial neural network was used to model the response of groundwater level to the above driving factors, and sensitivity analysis was conducted to measure the extent of impact of these factors on groundwater level. The results verified that human factors including irrigated area and water-saving irrigated area were the most important influencing factors on groundwater level dynamics, followed by annual precipitation. Further, groundwater samples were collected over the study area to analyze the groundwater hydrogeochemical signatures. With the hydrochemical diagrams and ion ratios, the formation of groundwater, the sources of groundwater components, and the main hydrogeochemical processes controlling the groundwater evolution were discussed to understand the natural background of groundwater environment. The fuzzy C-means clustering method was adopted to classify the groundwater samples into four clusters based on their hydrochemical characteristics to reveal the spatial variation of groundwater quality in the research area. Each cluster was spatially continuous, and there were great differences in groundwater hydrochemical and pollution characteristics between different clusters. The natural and human factors resulted in this difference were discussed based on the natural background of the groundwater environment, and the types and intensity of human activity.


Sign in / Sign up

Export Citation Format

Share Document