scholarly journals Response of a Coastal Groundwater System to Natural and Anthropogenic Factors: Case Study on East Coast of Laizhou Bay, China

Author(s):  
Ya Sun ◽  
Shiguo Xu ◽  
Qin Wang ◽  
Suduan Hu ◽  
Guoshuai Qin ◽  
...  

With a shifting climate pattern and enhancement of human activities, coastal areas are exposed to threats of groundwater environmental issues. This work takes the eastern coast of Laizhou Bay as a research area to study the response of a coastal groundwater system to natural and human impacts with a combination of statistical, hydrogeochemical, and fuzzy classification methods. First, the groundwater level dynamics from 1980 to 2017 were analyzed. The average annual groundwater level dropped 13.16 m with a descent rate of 0.379 m/a. The main external environmental factors that affected the groundwater level were extracted, including natural factors (rainfall and temperature), as well as human activities (irrigated area, water-saving irrigated area, sown area of high-water-consumption crops, etc.). Back-propagation artificial neural network was used to model the response of groundwater level to the above driving factors, and sensitivity analysis was conducted to measure the extent of impact of these factors on groundwater level. The results verified that human factors including irrigated area and water-saving irrigated area were the most important influencing factors on groundwater level dynamics, followed by annual precipitation. Further, groundwater samples were collected over the study area to analyze the groundwater hydrogeochemical signatures. With the hydrochemical diagrams and ion ratios, the formation of groundwater, the sources of groundwater components, and the main hydrogeochemical processes controlling the groundwater evolution were discussed to understand the natural background of groundwater environment. The fuzzy C-means clustering method was adopted to classify the groundwater samples into four clusters based on their hydrochemical characteristics to reveal the spatial variation of groundwater quality in the research area. Each cluster was spatially continuous, and there were great differences in groundwater hydrochemical and pollution characteristics between different clusters. The natural and human factors resulted in this difference were discussed based on the natural background of the groundwater environment, and the types and intensity of human activity.

2021 ◽  
Vol 251 ◽  
pp. 02045
Author(s):  
Sheng Su ◽  
Sifan Zhou ◽  
Guoqing Lin

Microplastic pollution has become a major global problem demanding prompt solution. So far, most research has focused on marine environment, but there is a lack of information about microplastic distribution, and persistence uptake in coastal soil environment. In this study, the Huangshui River Basin in Laizhou Bay and Dagu River Basin in Jiaozhou Bay of Shandong Province of China was taken as the research area. A total of 3,352 microplastic items were collected from 12 samples from the four sites in this study. The results showed that local soil was already affected by microplastics, of which 92.9% were particles, 6.1% were fibers, and only 1% were films. The existence of film PE indicated that the microplastic pollution in soil probably came from the plastic film. The degree of pollution was correlated with the size, and the size of microplastics was negatively correlated with abundance. Only a few labelled fibers were detected in groundwater samples, which may come from the external environment. This study contributes to a deeper understanding of environmental microplastic pollution in the coastal region.


2012 ◽  
Vol 9 (11) ◽  
pp. 16493-16519
Author(s):  
U. Tsunogai ◽  
A. Suzuki ◽  
S. Daita ◽  
T. Ohyama ◽  
D. D. Komatsu ◽  
...  

Abstract. The stable isotopic compositions of nitrate dissolved in 49 types of bottled drinking water collected worldwide were determined, to trace the fate of atmospheric nitrate (NO3–atm) that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O) of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from −0.2‰ to +4.5‰ (n = 49). The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol l−1 to 8.5 μmol l−1, with higher NO3–atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3–atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3–atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3–atm.


2004 ◽  
Vol 36 (4) ◽  
pp. 2057 ◽  
Author(s):  
Φ. Πλιάκας ◽  
I. Διαμαντής ◽  
A. Καλλιώρας ◽  
Χ. Πεταλάς

This paper investigates the progress of seawater intrusion within the plain area of Xylagani - Imeros, in SW part of Rhodope Prefecture, as well as the suitability of groundwater for several purposes, after qualitative valuation of groundwater samples from selective wells of the study area. The conclusions also include some managerial suggestions for the confrontation of seawater intrusion. The investigation in question took place between 1994-1997 and 2002-2003, and involves the installation of piezometric wells, geoelectric sounding measurements, grain size analyses, monitoring of the groundwater level fluctuations in selective wells, specific electrical conductivity measurements and chemical analyses of water samples from selective wells of the study area.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mara Meggiorin ◽  
Giulia Passadore ◽  
Silvia Bertoldo ◽  
Andrea Sottani ◽  
Andrea Rinaldo

The social, economic, and ecological importance of the aquifer system within the Bacchiglione basin (Veneto, IT) is noteworthy, and there is considerable disagreement among previous studies over its sustainable use. Investigating the long-term quantitative sustainability of the groundwater system, this study presents a statistical methodology that can be applied to similar cases. Using a combination of robust and widely used techniques, we apply the seasonal Mann–Kendall test and the Sen’s slope estimator to the recorded groundwater level timeseries. The analysis is carried out on a large and heterogeneous proprietary dataset gathering hourly groundwater level timeseries at 79 control points, acquired during the period 2005–2019. The test identifies significant decreasing trends for most of the available records, unlike previous studies on the quantitative status of the same resource which covered the domain investigated here for a slightly different period: 2000–2014. The present study questions the reason for such diverging results by focusing on the method’s accuracy. After carrying out a Fourier analysis on the longest available timeseries, for studies of groundwater status assessment this work suggests applying the Mann–Kendall test to timeseries longer than 20 years (because otherwise the analysis would be affected by interannual periodicities of the water cycle). A further analysis of two 60-year-long monthly timeseries between 1960 and 2020 supports the actual sustainable use of the groundwater resource, the past deployment of the groundwater resources notwithstanding. Results thus prove more reliable, and meaningful inferences on the longterm sustainability of the groundwater system are possible.


2013 ◽  
Vol 295-298 ◽  
pp. 159-163 ◽  
Author(s):  
Zhen Min Ma ◽  
Yun Yun Luo ◽  
Yun Zhi Fang ◽  
Yu Song Hou

The research of hydrogeochemical mechanism of petroleum hydrocarbon in karst fissure groundwater system is important to predict the trend of petroleum hydrocarbons and the change of groundwater environment. We take the karst fissure water system as the research object, where there is a refinery. The variation of SO42-, HCO3-, NO3-, NO2-, HS- can be used as a hydrogeochemical sign of petroleum hydrocarbon pollution by analyzing the change of water quality parameters before and after karst fissure water contaminated by petroleum hydrocarbon. It has been also analyzed systematically that hydrogeochemical mechanism including desulfurization, denigration and ion exchange happen during the pollution process in the karst fissure water system. It is pointed out that the human activities have a great impact on the groundwater and changes of environment.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2869
Author(s):  
Xiaohui Pan ◽  
Weishi Wang ◽  
Tie Liu ◽  
Yue Huang ◽  
Philippe De Maeyer ◽  
...  

In the past few decades, the shrinkage of the Aral Sea is one of the biggest ecological catastrophes caused by human activity. To quantify the joint impact of both human activities and climate change on groundwater, the spatiotemporal groundwater dynamic characteristics in the Amu Darya Delta of the Aral Sea from 1999 to 2017 were analyzed, using the groundwater level, climate conditions, remote sensing data, and irrigation information. Statistics analysis was adopted to analyze the trend of groundwater variation, including intensity, periodicity, spatial structure, while the Pearson correlation analysis and principal component analysis (PCA) were used to quantify the impact of climate change and human activities on the variabilities of the groundwater level. Results reveal that the local groundwater dynamic has varied considerably. From 1999 to 2002, the groundwater level dropped from −189 cm to −350 cm. Until 2017, the groundwater level rose back to −211 cm with fluctuation. Seasonally, the fluctuation period of groundwater level and irrigation water was similar, both were about 18 months. Spatially, the groundwater level kept stable within the irrigation area and bare land but fluctuated drastically around the irrigation area. The Pearson correlation analysis reveals that the dynamic of the groundwater level is closely related to irrigation activity within the irrigation area (Nukus: −0.583), while for the place adjacent to the Aral Sea, the groundwater level is closely related to the Large Aral Sea water level (Muynak: 0.355). The results of PCA showed that the cumulative contribution rate of the first three components exceeds 85%. The study reveals that human activities have a great impact on groundwater, effective management, and the development of water resources in arid areas is an essential prerequisite for ecological protection.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1958 ◽  
Author(s):  
Zhang ◽  
Wang ◽  
Zhou

This study conducted quantitative diagnosis on the impact of climate change and human activities on drought risk. Taking the Kuye river basin (KRB) in China as the research area, we used variation point diagnosis, simulation of precipitation and runoff, drought risk assessment, and attribution quantification. The results show that: (1) the annual runoff sequence of KRB changed significantly after 1979, which was consistent with the introduction of large-scale coal mining; (2) under the same drought recurrence period, the drought duration and severity in the human activity stage were significantly worse than in the natural and simulation stages, indicating that human activities changed the drought risk in this area; and (3) human activities had little impact on drought severity in the short duration and low recurrence period, but had a greater impact in the long duration and high recurrence period. These results provide scientific guidance for the management, prevention, and resistance of drought; and guarantee sustainable economic and social development in the KRB.


2020 ◽  
Vol 12 (12) ◽  
pp. 5214 ◽  
Author(s):  
Hao Wang ◽  
Fei Yao ◽  
Huasheng Zhu ◽  
Yuanyuan Zhao

Vegetation coverage is a key variable in terrestrial ecosystem monitoring and climate change research and is closely related to soil erosion and land desertification. In this article, we aimed to resolve two key scientific issues: (1) quantifying the spatial-temporal vegetation dynamics in the Otindag Sandy Land (OSL); and (2) identifying the relative importance of climate factors and human activities in impacting vegetation dynamics. Based on correlation analysis, simple regression analysis, and the partial derivative formula method, we examined the spatiotemporal variation of vegetation coverage in the OSL, belonging to the arid and semiarid region of northern China, and their interaction with climate-human factors. The results showed that the vegetation coverage of the area showed a downward trend with a rate of −0.0006/a during 2001–2017, and gradually decreased from east to west. Precipitation was the main climate factor controlling the overall distribution pattern of vegetation coverage, while the human factors had a more severe impact on the vegetation coverage than the climate factors in such a short period, and the overall impact was negative. Among the human factors, population pressure, urbanization, industrialization, pastoral production activities, and residents’ lifestyles had a negative impact. However, ecological restoration polices alleviated the contradiction between human development and vegetation deterioration. The results of this article provide a scientific basis for restoring grassland systems in arid and semi-arid areas


2007 ◽  
Vol 4 (6) ◽  
pp. 4265-4295 ◽  
Author(s):  
J. Dams ◽  
S. T. Woldeamlak ◽  
O. Batelaan

Abstract. Land-use change and climate change, along with groundwater pumping are frequently indicated to be the main human-induced factors influencing the groundwater system. Up till now, research has mainly been focusing on the effect of the water quality of these human-induced changes on the groundwater system, often neglecting changes in quantity. The focus in this study is on the impact of land-use changes in the near future, from 2000 until 2020, on the groundwater quantity and the general hydrologic balance of a sub-catchment of the Kleine Nete, Belgium. This study tests a new methodology which involves coupling a land-use change model with a water balance model and a groundwater model. The future land-use is modelled with the CLUE-S model. Four scenarios (A1, A2, B1 and B2) based on the Special Report on Emission Scenarios (SRES) are used for the land-use modelling. Water balance components, groundwater level and baseflow are simulated using the WetSpass model in conjunction with a MODFLOW groundwater model. Results show that the average recharge slowly decreases for all scenarios, the decreases are 2.9, 1.6, 1.8 and 0.8% for respectively scenario A1, A2, B1 and B2. The predicted reduction in recharge results in a small decrease of the average groundwater level, ranging from 2.5 cm for scenario A1 to 0.9 cm for scenario B2, and a reduction of the total baseflow with maximum 2.3% and minimum 0.7% respectively for scenario A1 and B2. Although these average values do not indicate significant changes for the groundwater system, spatial analysis of the changes shows the changes are concentrated in the neighbourhood of the major cities in the study areas. It is therefore important for spatial managers to take the groundwater system into account for reducing the negative impacts of land-use and climate change as much as possible.


Sign in / Sign up

Export Citation Format

Share Document