Modelling of the Secondary Clarifier Combined with the Activated Sludge Model No. 1

1992 ◽  
Vol 25 (6) ◽  
pp. 285-300 ◽  
Author(s):  
René Dupont ◽  
Mogens Henze

Modelling of activated sludge wastewater treatment plants is today generally based on the Activated Sludge Model No. 1 combined with a very simple model for the secondary settler. This paper describes the development of a model for the secondary clarifier based on the general flux theory for zone settling, which can be used in combination with the Activated Sludge Model to form a dynamic computer model/program for a wastewater treatment plant. In addition to the flux model, the developed model includes a simple model for predicting the contents of paniculate components in the effluent This latter model is a purely empirical model, which connects the effluent quality with the hydraulic load, suspended solids load and the nitrate load. The paper describes the model and gives some basic examples on computer simulations and verification of the model.

1992 ◽  
Vol 26 (3-4) ◽  
pp. 783-790
Author(s):  
J. Pedersen

A newly developed simulation program, based on the Activated Sludge Model No. 1, has been investigated for its controlling abilities. The program is capable of simulating most of the control types which have been applied to wastewater treatment plants. The program was tested on a nitrifying and a denitrifying treatment plant. The results showed that the model makes good simulations of the applied controls.


1999 ◽  
Vol 39 (2) ◽  
pp. 145-150
Author(s):  
T. Dormoy ◽  
B. Tisserand ◽  
L. Herremans

The new regulations require an increased amount of treatment of stormwater and a reduction of pollution loads discharged into the natural surroundings to be considered. Drainage systems therefore and particularly wastewater treatment plants should be sized correctly to cope with these peaks. Using a simulation software of wastewater treatment plant with activated sludge, such as SIMBAD, enables us to check that planned structures are appropriate in relation to the effluent quality requirements laid down, and to fix the most appropriate operating procedures. Operating constraints on a plant for treating stormwater are not negligible. It is advisable to allow for increased sludge production, O2 requirements and also sludge quality (fermentability).


1992 ◽  
Vol 25 (6) ◽  
pp. 167-183 ◽  
Author(s):  
H. Siegrist ◽  
M. Tschui

The wastewater of the municipal treatment plants Zürich-Werdhölzli (350000 population equivalents), Zürich-Glatt (110000), and Wattwil (20000) have been characterized with regard to the activated sludge model Nr.1 of the IAWPRC task group. Zürich-Glatt and Wattwil are partly nitrifying treatment plants and Zürich-Werdhölzli is fully nitrifying. The mixing characteristics of the aeration tanks at Werdhölzli and Glatt were determined with sodium bromide as a tracer. The experimental data were used to calibrate hydrolysis, heterotrophic growth and nitrification. Problems arising by calibrating hydrolysis of the paniculate material and by measuring oxygen consumption of heterotrophic and nitrifying microorganisms are discussed. For hydrolysis the experimental data indicate first-order kinetics. For nitrification a maximum growth rate of 0.40±0.07 d−1, corresponding to an observed growth rate of 0.26±0.04 d−1 was calculated at 10°C. The half velocity constant found for 12 and 20°C was 2 mg NH4-N/l. The calibrated model was verified with experimental dam of me Zürich-Werdhölzli treatment plant during ammonia shock load.


1994 ◽  
Vol 30 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Ralf Otterpohl ◽  
Thomas Rolfs ◽  
Jörg Londong

Computer simulation of activated sludge plant for nitrogen removal has become a reliable tool to predict the behaviour of the plant Models including biological phosphorus removal still require some practical experience but they should be available soon. This will offer an even wider range than today's work with nitrogen removal. One major benefit of computer simulation of wastewater treatment plants (WTP) is the optimization of operation. This can be done offline if hydrographs of a plant are collected and computer work is done with “historical” analysis. With online simulation the system is fed with hydrographs up to the actual time. Prognosis can be done from the moment of the computer work based on usual hydrographs. The work of the authors shows how accuratly a treatment plant can be described, when many parameters are measured and available as hydrographs. A very careful description of all details of the special plant is essential, requiring a flexible simulation tool. Based on the accurate simulation a wide range of operational decisions can be evaluated. It was possible to demonstrate that the overall efficiency in nitrogen removal and energy consumption of ml activated sludge plant can be improved.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 81-89 ◽  
Author(s):  
C. J. Brouckaert ◽  
C. A. Buckley

Computational Fluid Dynamics (CFD) studies of a secondary clarifier at Durban's Northern Wastewater Treatment Works, and of a clarifier at the potable water treatment plant at Umzinto, a small town near Durban, have been undertaken with a view to improving their load capacities. In both cases the units are located in relatively old treatment plants, which face continually increasing loads due to population growth. Increasing the capacity of existing equipment, rather than installing new equipment, constitutes an efficient use of development capital. Although the two clarifiers have considerable design differences, the CFD studies indicated remarkably similar circulating flows, which concentrate up-flow near the outer wall of the clarifier in the region of the clarified water overflow weirs. Baffles were designed to disrupt the circulation so as to distribute up-flow over a wider area, thereby reducing the maximum vertical velocities. In the case of the wastewater secondary clarifier, the modification has been implemented, and evaluated in comparative tests involving an otherwise identical unmodified clarifier. In the case of the potable water clarifier, the modification has still to be implemented.


2012 ◽  
Vol 573-574 ◽  
pp. 659-662
Author(s):  
Hao Wang

In Tangshan area, the secondary effluent of wastewater treatment plants was used for this study. Horizontal zeolite wetland was carried out treating it. Hydraulic loading rate was the parameters for analyzing the nitrogen and phosphorus removal efficiency of pollutants from the secondary effluent of wastewater treatment plant. Zeolite constructed wetlands showed different behaviors for nitrogen and phosphorus removals.Under the optimum hydraulic loading rate, the primary pollutions were removed to a large extent.


2011 ◽  
Vol 83 (11) ◽  
pp. 2036-2048 ◽  
Author(s):  
C. Fall ◽  
M. A. Espinosa-Rodriguez ◽  
N. Flores-Alamo ◽  
M. C. M. van Loosdrecht ◽  
C. M. Hooijmans

2004 ◽  
Vol 50 (6) ◽  
pp. 251-260 ◽  
Author(s):  
M.S. Moussa ◽  
A.R. Rojas ◽  
C.M. Hooijmans ◽  
H.J. Gijzen ◽  
M.C.M. van Loosdrecht

Computer modelling has been used in the last 15 years as a powerful tool for understanding the behaviour of activated sludge wastewater treatment systems. However, computer models are mainly applied for domestic wastewater treatment plants (WWTPs). Application of these types of models to industrial wastewater treatment plants requires a different model structure and an accurate estimation of the kinetics and stoichiometry of the model parameters, which may be different from the ones used for domestic wastewater. Most of these parameters are strongly dependent on the wastewater composition. In this study a modified version of the activated sludge model No. 1 (ASM 1) was used to describe a tannery WWTP. Several biological tests and complementary physical-chemical analyses were performed to characterise the wastewater and sludge composition in the context of activated sludge modelling. The proposed model was calibrated under steady-state conditions and validated under dynamic flow conditions. The model was successfully used to obtain insight into the existing plant performance, possible extension and options for process optimisation. The model illustrated the potential capacity of the plant to achieve full denitrification and to handle a higher hydraulic load. Moreover, the use of a mathematical model as an effective tool in decision making was demonstrated.


1994 ◽  
Vol 30 (4) ◽  
pp. 181-190 ◽  
Author(s):  
René Dupont ◽  
Ole Sinkjær

The objective of the work presented is to demonstrate how computer based models can be used to improve the effluent quality from wastewater treatment plants by optimisation of the operation. The investigation was carried out in connection with pilot plant investigations at Damhusllen Wastewater Treatment Plant in order to establish the design basis for upgrading the treatment plants in the city of Copenhagen. Calibration of the model was done with thorough characterisation of the wastewater and the activated sludge as the primary calibration tool. Special attention was paid to the nitrification process, which by previous investigations was shown to be occasionally inhibited. Model constants for the nitrification process were detennined from experiments. Default constants were used for nearly all other constants. The pilot plant was optimized with the calibrated model. Different operational strategies for improvement of the denitrification process were tested. The denitrification process was operated relatively poorly at the time for the optimisation. The calibration showed that it was possible to calibrate the model using the characterization of the wastewater and the activated sludge as the primary calibration tool. Further it was shown that the calihrated model could be used as a tool for optimising the operation of the pilot plant. The suggested operation correlated well with the practical realisable operation.


Sign in / Sign up

Export Citation Format

Share Document