Anaerobic Biofiltration versus Aerobic Membrane Filtration: Comparison on a Difficult Substrate

1992 ◽  
Vol 25 (10) ◽  
pp. 211-218 ◽  
Author(s):  
P. Sauvegrain ◽  
A. Tazi-Pain ◽  
F. Rogalla ◽  
F. Valter

Several methods were compared to treat heat treatment liquor on a municipal wastewater treatment plant, to reduce loading and allow upgrading. To ensure low suspended solids in the return flows, granular anaerobic filters were chosen in parallel with membrane treatment:–an upflow wood-based charcoal anaerobic filter–an upflow floating polystyrene anaerobic filter–an aerobic reactor (activated sludge) coupled with microfiltration. Very similar loading rates and removal efficiency was obtained with the anaerobic filters; they allow to treat highly concentrated effluents in a detention time of 10 h but COD removal efficiency was limited to 60%. The higher contact time of up to 7 days in aerobic treatment, coupled with microfiltration, achieves elimination of 85% of COD and 95% of BOD. Nevertheless, loading rates and biomass concentrations remained low and flux on the membranes was heavily restricted.

2019 ◽  
Vol 41 (1) ◽  
pp. 47-54
Author(s):  
Magdalena Domańska ◽  
Anna Boral ◽  
Kamila Hamal ◽  
Magdalena Kuśnierz ◽  
Janusz Łomotowski ◽  
...  

AbstractThe increasingly stringent requirements for wastewater treatment enforce the adoption of technologies that reduce pollution and minimize waste production. By combining the typical activated sludge process with membrane filtration, biological membrane reactors (MBR) offer great technological potential in this respect. The paper presents the principles and effectiveness of using an MBR at the Głogów Małopolski operation. Physicochemical tests of raw and treated wastewater as well as microscopic analyses with the use of the FISH (fluorescence in situ hybridization) method were carried out. Moreover, the level of electric energy consumption during the operation of the wastewater treatment plant and problems related to fouling were also discussed. A wastewater quality analysis confirmed the high efficiency of removing organic impurities (on average 96% in case of BOD5 and 94% in case of COD) and suspension (on average 93%).


2018 ◽  
Vol 78 (9) ◽  
pp. 1843-1851 ◽  
Author(s):  
İ. Çelen-Erdem ◽  
E. S. Kurt ◽  
B. Bozçelik ◽  
B. Çallı

Abstract The sludge digester effluent taken from a full scale municipal wastewater treatment plant (WWTP) in Istanbul, Turkey, was successfully deammonified using a laboratory scale two-stage partial nitritation (PN)/Anammox (A) process and a maximum nitrogen removal rate of 1.02 kg N/m3/d was achieved. In the PN reactor, 56.8 ± 4% of the influent NH4-N was oxidized to NO2-N and the effluent nitrate concentration was kept below 1 mg/L with 0.5–0.7 mg/L of dissolved oxygen and pH of 7.12 ± 12 at 24 ± 4°C. The effluent of the PN reactor was fed to an upflow packed bed Anammox reactor where high removal efficiency was achieved with NO2-N:NH4-N and NO3-N:NH4-N ratios of 1.32 ± 0.19:1 and 0.22 ± 0.10:1, respectively. The results show that NH4-N removal efficiency up to 98.7 ± 2.4% and total nitrogen removal of 87.7 ± 6.5% were achieved.


2004 ◽  
Vol 4 (1) ◽  
pp. 143-149 ◽  
Author(s):  
T. Itonaga ◽  
Y. Watanabe

This paper deals with the performance of a hybrid membrane bioreactor (MBR) combined with pre-coagulation/sedimentation. Primary clarifier effluent in a municipal wastewater treatment plant was fed into the hybrid MBR to investigate its performance during long-term operation. Pre-coagulation/sedimentation process efficiently removed the suspended solids including organic matter and phosphorus. Comparison of the hybrid MBR and conventional MBR was made in terms of the permeate quality and membrane fouling. As the organic loading to the MBR was significantly reduced by the pre-coagulation/sedimentation, production and accumulation of extracellular polymeric substances (EPS) may be limited. Therefore, the mixed liquor viscosity in the hybrid MBR was much lower than that in the conventional MBR. These effect caused by pre-coagulation/sedimentation brought a remarkable improvement in both permeate quality and membrane permeability.


2011 ◽  
Vol 356-360 ◽  
pp. 1331-1334
Author(s):  
Tao Lv ◽  
Wu Long Zhang ◽  
Xie Zhang ◽  
Feng Xue

This paper studies through project cases the treatment effect of integrated technique of anaerobic filter and constructed wetland on domestic wastewater in military camps, and the method for preventing the blocking of anaerobic filter and constructed wetland packing. The results show that its average removal rate of COD, NH4+-N, TP and SS is 83.1%, 37.5%, 49.8% and 91.5% respectively, with effluent meeting the standard of Grade II in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002); as planned, two anaerobic filters, one for operation and the other laying fallow at a alternate period of 6 months, in combination of the design of spoil disposal, can effectively prevent the packing layer from being blocked; being preprocessed, anaerobic filter can effectively prevent the packing layer of constructed wetland from being blocked; in case of a certain difference in elevation, the integrated technique can achieve unpowered operation. Besides, it is easy to implement and manage at a low operational cost without professional technician, and can treat decentralized domestic wastewater, therefore, is suitable for camps.


2011 ◽  
Vol 374-377 ◽  
pp. 1036-1039 ◽  
Author(s):  
Meng Lin ◽  
Yun Han

Abstract:The constructed wetland is a new kind of wastewater treatment developing in recent years, which is very suitable for the regional characteristics of Shaanxi province. The design of the constructed wetlands is developed from the traditional sub-surface horizontal-flow wetlands (SSHFW). Two groups of wetlands were designed in parallel, and each single wetland can also became the vertical-flow wetland system. Aerating in front of the constructed wetlands is to study the removal efficiency of the organics. Test indicators contain SS、COD、Nitrogen、Phosphor and the rate of nitrification and de-nitrification. According to the experiments of the self-designed SSHFW, the removal efficiency of the SS, COD, NH4+-N、TN and TP were 92%, 82%, 40%, 46.2% and 70% respectively. The strength of nitrification and de-nitrification of the packing reached to 0.35mg/(kg.h) and 3.32mg/(kg.h). On the basis of the Langmuir adsorption isotherm equation, the adsorption quantity of coarse sand and gravel were 405.2mg/kg and 498.6mg/kg. The quality of the effluent met the primary standard of B-standard in the discharge standards of pollutants for municipal wastewater treatment plant (GB18918-2002).


2016 ◽  
Vol 11 (2) ◽  
pp. 503-515 ◽  
Author(s):  
Annette Rößler ◽  
Steffen Metzger

In 2010, the Mannheim wastewater treatment plant was expanded with an adsorptive treatment stage to remove organic micropollutants (OMPs). Differences in the removal efficiencies of the OMPs investigated were determined over four years of operation by applying different powdered activated carbon (PAC) products and a constant volume-proportional dosing of 10 mg PAC/L. Possible influences on the removal efficiency are discussed here on the basis of the data obtained, exemplified for the analgesic diclofenac. The analyses show that the removal efficiency is influenced significantly by the spectral absorption coefficient (SAC) of the biologically treated wastewater at a wavelength of 254 nm (SAC254). Therefore, in order to ensure the constant treatment performance desired, the dosage of PAC should be adjusted to the measured SAC254 values. Moreover, as the SAC254 reduction correlates with the removal efficiency of OMPs, the additional determination of its reduction allows indirect control of the actual removal performance achieved. The SAC254 reduction can also be used for targeted control of the PAC dosage.


2011 ◽  
Vol 393-395 ◽  
pp. 1198-1202
Author(s):  
Yan Li ◽  
Na Meng

ECOSUNIDE (ecological superior nitrification denitrification), based on the advanced theories including uniform dynamic, dynamic loading, sludge concentraion optimization, simultaneous nitrification and denitrification, etc., is characterized by high removal efficiency of COD, BOD, nutrient, short total detention period, low operating cost, etc. This process has been successfully applied in the Further Treatment Engineering in Luozhuang of Linyi. The effluent qualities meet the ClassⅠ-A Criteria Specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002).


2009 ◽  
Vol 60 (1) ◽  
pp. 251-259 ◽  
Author(s):  
C. Kazner ◽  
J. Meier ◽  
T. Wintgens ◽  
T. Melin

Direct capillary nanofiltration was tested for reclamation of tertiary effluent from a municipal wastewater treatment plant. This process can be regarded as a promising treatment alternative for high quality water reuse applications when combined with powdered activated carbon for enhanced removal of organic compounds. The nanofiltration was operated at flux levels between 20 and 25 L/(m2 h) at a transmembrane pressure difference of 2–3 bar for approximately 4,000 operating hours. The study was conducted with PAC doses in the range from 0 to 50 mg/L. The plant removal for DOC ranged from 88–98%. The sulfate retention of the membrane filtration process was between 87 and 96%. The process provided a consistently high permeate quality with respect to organic and inorganic key parameters.


2008 ◽  
Vol 62 (5) ◽  
Author(s):  
Lucia Dančová ◽  
Igor Bodík ◽  
Andrea Blšťáková ◽  
Zuzana Jakubčová ◽  
Miloslav Drtil

AbstractPossibilities of membrane technology and the use of membrane processes in wastewater treatment were investigated. The main focus was the monitoring of the starting phase of a domestic wastewater treatment plant. Experimental part of the study was realized at the municipal wastewater treatment plant (WWTP) Devínska Nová Ves — Bratislava during the period from February 2005 to September 2006. The system was stable without any external chemical treatment of the membrane modules and the permeate quality was very high. Observed decrease of COD and BOD5 values ranged between 91 % and 98 %. The process of nitrification was very successful considering its high efficiency (> 95 %).


Sign in / Sign up

Export Citation Format

Share Document