Full Scale Experiences with Nutrient Removal at Two Wastewater Treatment Plants in The Netherlands

1993 ◽  
Vol 27 (5-6) ◽  
pp. 343-355 ◽  
Author(s):  
H. Draaijer ◽  
A. H. M. Buunen-van Bergen ◽  
E. van't Oever ◽  
A. A. J. C. Schellen

Two full scale projects are described in this paper; these are the Bergambacht wastewater plant (carrousel) and the Terneuzen wastewater plant (Schreiber system). Both plants use a system of intermittent aeration to combine nitrification and denitrification processes. At the Bergambacht plant biological phosphorus removal is carried out by the introduction of the side stream process. At the Terneuzen plant it is carried out by introducing anaerobic periods in the aeration tanks. The objective is to meet the new total nitrogen and phosphorus effluent standards in The Netherlands of resp. 10-15 and 1-2 mg/l. At the Terneuzen wastewater plant the standards could not be reached for total-nitrogen, mainly due to the low BOD to Kj-N ratio of 2:8 in the feed to the aeration tanks. Adjustments are suggested to improve the denitrification rate. At the Bergambacht wastewater plant effluent concentrations of 6 - 7 mg/l total N and 0.3 mg/l total P were achieved.

1990 ◽  
Vol 22 (7-8) ◽  
pp. 35-43
Author(s):  
K. D. Tracy ◽  
S. N. Hong

The anaerobic selector of the A/0™ process offers many advantages over conventional activated sludge processes with respect to process performance and operational stability. This high-rate, single-sludge process has been successfully demonstrated in full-scale operations for biological phosphorus removal and total nitrogen control in addition to BOD and TSS removal. This process can be easily utilized in upgrading existing treatment plants to meet stringent discharge limitations and to provide capacity expansion. Upgrades of two full-scale installations are described and performance data from the two facilities are presented.


1985 ◽  
Vol 17 (11-12) ◽  
pp. 297-298 ◽  
Author(s):  
Takao Murakami ◽  
Atsushi Miyairi ◽  
Kazuhiro Tanaka

In Japan various biological phosphorus removal processes have recently been researched by laboratory or pilot plant scale studies and most of them have shown good results. Based on these results, the Japan Sewage Works Agency has conducted a full scale study of the biological phosphorus removal process from June 1982 until February 1983, which was the first full scale operation of this process in Japan. The main purpose of the study was to evaluate phosphorus removal efficiency and also nitrogen removal efficiency of the process and in addition, to ascertain the important operating factors of the process. For the study a treatment train of a large scale sewage treatment plant was remodelled. The aeration tank of 3.825 m3 volume was divided into four equal cells. The whole train including return sludge line was operated entirely independently of the other trains. During the experiment the train was operated under two different modes, Mode 1 and Mode 2. In Mode 1, the train was operated as an A/O process, the first cell of the aeration tank being anaerobic and the other cells oxic. In Mode 2, the train was operated as a Modified Phoredox process. In this case, the first cell was anaerobic, but the second cell was anoxic and nitrified liquor was returned to it from the end of the oxic cells. Mode 1 and Mode 2 were further divided into many ‘runs' and the flow rate varied between 12,550 m3 d−1 and 25,270 m3 d−1 , corresponding to retention times of 7.3 hours and 3.6 hours, respectively. Throughout the experimental period the mean value of influent (primary effluent) total-P concentration was 3.38 mg 1−1 , and that of the final effluent was 0.47 mg 1−1 . A cumulated frequency curve of the data showed that about 93% of measured effluent total-P was below 1.0 mg l−1 . Therefore, it can be concluded that with these influent total-P levels, biological phosphorus removal processes can sufficiently satisfy the effluent standard of 1 mg 1−1 total-P. Even when the process was operated as a Modified Phoredox Process, no obstruction to phosphorus removal because of nitrification was observed and phosphorus removal remained good. However, since the sewage treatment plant treated influent from a combined sewerage system, phosphorus removal was sometimes affected by heavy rainfalls. In such cases phosphorus release in the anaerobic cell was insufficient because of increased influent NOx concentration and accordingly increased denitrification level in the anaerobic cell. Therefore, as a result, enhanced phosphorus uptake in the following cells could not be observed. Higher process stability can be expected if an effective countermeasure to high influent NOx concentration can be made. Influence of flow rate fluctuation on the process was also studied. The treatment train was operated for a week under a daily flow rate fluctuation pattern which ranged between 460 m3 hr−1 and 820 m3 hr−1 . Nevertheless, the effluent total-P concentration showed no increase and stayed constantly lower than 0.5 mg 1−1. The oxidation reduction potential (ORP) was an effective control index to evaluate the degree of phosphorus release in the anaerobic cell. Water temperature did not affect phosphorus release and uptake rates.


1983 ◽  
Vol 15 (3-4) ◽  
pp. 1-13 ◽  
Author(s):  
James L Barnard

This paper briefly summarizes the early work on phosphorus removal in activated sludge plants in the U.S.A. and observed that such removals only occurred in low SRT plants of the plug flow type and in the Phostrip plants, neither designed for full nitrification. The discovery of simultaneous nitrogen and phosphorus removal, as well as full-scale experiments are discussed. The Phoredox process was proposed utilizing internal recycling for the removal of nitrates and an anaerobic first stage in which the incoming feed is used to obtain the necessary anaerobic conditions, essential as a conditioning step for the uptake of phosphorus. Proposed mechanisms are discussed.


2006 ◽  
Vol 54 (1) ◽  
pp. 267-275 ◽  
Author(s):  
E. Tykesson ◽  
L.L. Blackall ◽  
Y. Kong ◽  
P.H. Nielsen ◽  
J. la Cour Jansen

Enhanced biological phosphorus removal (EBPR) has been used at many wastewater treatment plants all over the world for many years. In this study a full-scale sludge with good EBPR was tested with P-release batch tests and combined FISH/MAR (fluorescence in situ hybridisation and microautoradiography). Proposed models of PAOs and GAOs (polyphosphate- and glycogen-accumulating organisms) and microbial methods suggested from studies of laboratory reactors were found to be applicable also on sludge from full-scale plants. Dependency of pH and the uptake of both acetate and propionate were studied and used for calculations for verifying the models and results from microbial methods. All rates found from the batch tests with acetate were higher than in the batch tests with propionate, which was explained by the finding that only those parts of the bacterial community that were able to take up acetate anaerobically were able to take up propionate anaerobically.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 123-128 ◽  
Author(s):  
J.L. Zilles ◽  
C.-H. Hung ◽  
D.R. Noguera

The objective of this research was to assess the relevance of organisms related to Rhodocyclus in enhanced biological phosphorus removal in full-scale wastewater treatment plants. The presence of these organisms in full-scale plants was first confirmed by fluorescent in situ hybridization. To address which organisms were involved in phosphorus removal, a method was developed which selected polyphosphate-accumulating organisms from activated sludge samples by DAPI staining and flow cytometry. Sorted samples were characterized using fluorescent in situ hybridization. The results of these analyses confirmed the presence of organisms related to Rhodocyclus in full-scale wastewater treatment plants and supported the involvement of these organisms in enhanced biological phosphorus removal. However, a significant fraction of the polyphosphate-accumulating organisms were not related to Rhodocyclus.


2013 ◽  
Vol 68 (4) ◽  
pp. 763-768 ◽  
Author(s):  
N. Cullen ◽  
R. Baur ◽  
P. Schauer

The first full-scale nutrient recovery installation in North America became operational in May 2009 at the Clean Water Service's Durham Advanced Wastewater Treatment Plant in Tigard, Oregon. Recovering ammonia and phosphorus from the dewatering side stream as struvite has a positive impact on plant operations. Significantly reducing the phosphorus recycle lowers the phosphorus loading on the plant, stabilizes biological phosphorus removal, reduces the amount of chemicals needed to remove phosphorus, reduces both the dry tonnes of biosolids generated and the phosphorus content of the biosolids, and provides revenue from the sale of the struvite. To increase struvite production and to decrease struvite potential in the digestion system, the Waste Activated Sludge Stripping To Remove Internal Phosphorus (WASSTRIP™) process was implemented full-scale in summer 2011. Results indicate a potential 60% increase in struvite production is achievable.


Author(s):  
Giedre Vaboliene ◽  
Algirdas Bronislovas Matuzevičius

Nitrogen and phosphorus removal is necessary to avoid eutrophication of water bodies when treated wastewater is outlet to slowly flowing water bodies or recycled as technological water. The “BioBalance” technology as the latest way of nitrogen and phosphorus removal was applied at Utena Wastewater Treatment Plant. Composition of wastewater has an impact on biological phosphorus removal, particularly the ratio of biochemical oxygen demand and total phosphorus (BOD7/Total-P) in wastewater after mechanical treatment. Nitrates in the anaerobic zone can have a negative effect on biological phosphorus removal. Consequently, it is necessary to evaluate the impact of the mentioned factors on biological nitrogen and phosphorus removal. Biological nitrogen and phosphorus removal was evaluated and compared by using the “BioBalance” technology for biological nitrogen and phosphorus removal and technology before reconstruction during this investigation. The correlation regressive analysis of the biochemical oxygen demand and total phosphorus (BOD7/Total‐P) after mechanical treatment and the total phosphorus concentration in the effluent was evaluated. The correlation regressive analysis of nitrates in an anaerobic zone on the aeration tank and the efficiency of phosphorus removal was also evaluated.


Sign in / Sign up

Export Citation Format

Share Document