Anaerobic treatment of soil wash fluids from a wood preserving site

1998 ◽  
Vol 38 (7) ◽  
pp. 63-72 ◽  
Author(s):  
K. M. Miller ◽  
M. T. Suidan ◽  
G. A. Sorial ◽  
A. P. Khodadoust ◽  
C. M. Acheson ◽  
...  

An integrated system has been developed to remediate soils contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil solvent washing and anaerobic biotreatment of the extract. Specifically, this study evaluated the effectiveness of the granular activated carbon (GAC) fluidized-bed reactor to treat a synthetic waste stream of PCP and four PAHs (naphthalene, acenaphthene, pyrene, and benzo(b)fluoranthene) under anaerobic conditions. This waste stream was intended to simulate the wash fluids from a soil washing process treating soils from a wood preserving site. The reactor achieved a removal efficiency of greater than 99.8% for PCP with conversion to its dechlorination intermediates ranging from 47% to 77%. Effluent, carbon extraction, and isotherm data also indicate that naphthalene and acenaphthene were removed from the liquid phase with efficiencies of 86% and 93%, respectively. Effluent levels of pyrene and benzo(b)fluoranthene were extremely low due to the adsorptive capacity of GAC for these compounds. Experimental evidence does not suggest that these compounds were chemically transformed within the reactor.

2003 ◽  
Vol 48 (4) ◽  
pp. 53-60 ◽  
Author(s):  
E. Trably ◽  
D. Patureau ◽  
J.P. Delgenes

Anaerobically stabilized sewage sludge has potential to partially substitute synthetic fertilizers. The main risk with the recycling of urban sludge on agricultural soils is the accumulation of unwanted products, such as trace metals and organic micropollutants. In this context, the polycyclic aromatic hydrocarbons (PAHs) are particularly monitored because of their toxic properties at low concentrations and their high resistance to biological degradation. The aim of the present study was to optimize PAHs removal during anaerobic digestion of contaminated sewage sludge. Thirteen PAHs were monitored in laboratory-scale anaerobic bioreactors under mesophilic (35°C) and thermophilic (55°C) methanogenic conditions. Abiotic losses were statistically significant for the lightest PAHs, such as fluorene, phenanthrene and anthracene. It was shown that PAH removal was due to a specific biological activity. Biological PAHs removal was significantly enhanced by an increase of the temperature from 35°C to 55°C, especially for the heaviest PAHs. Bioaugmentation experiment was also performed by addition of a PAH-adapted bacterial consortium to a non-acclimated reactor. Significant enhancement of PAHs removal was observed. It was finally shown that PAH removal efficiencies and methanogenic performances were closely linked. The rate of biogas production may be used as an indicator of bacterial activity on PAH removal.


Author(s):  
Abdullahi Evuti Mohammed ◽  
Kamoru Adio Salam ◽  
Silas Shamaye Samuel

The increasing contamination of soil by petroleum products has been a great source of concern to our society because of its negative consequences on the environment. Thus, several remediation technologies and trials have been propounded for a crude oil-polluted environment. This chapter reviews the dynamics of pollutants in the soil and the various treatment technologies for petroleum-polluted soils viz physico-chemical, thermal, and biological treatment methods. Authors experimented on soil washing using detergent for the remediation of petroleum contaminated soils considering different concentrations. The percentage removal of aliphatic and Polycyclic Aromatic Hydrocarbons (PAHs) was determined using Gas Chromatography Mass Spectrometry (GC-MS). The highest percentage removal efficiencies of 97.55% and 61.41% for aliphatic and Polycyclic Aromatic Hydrocarbons were obtained at detergent concentration of 20w/v% respectively.


2006 ◽  
Vol 62 (3) ◽  
pp. 359-368
Author(s):  
Hirokazu AKAGI ◽  
Mitsuo MOURI ◽  
Masashi TANAKA ◽  
Seiichi ISHIDA

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
David Kessel ◽  
Jihan Jeon ◽  
Jaeyeon Jung ◽  
Eutteum Oh ◽  
Chang-Lak Kim

This paper describes the development of a discrete event simulation model using the FlexSim software to support planning for soil remediation at Korean nuclear power plants that are undergoing decommissioning. Soil remediation may be required if site characterization shows that there has been radioactive contamination of soil from plant operations or the decommissioning process. The simulation model was developed using a dry soil separation and soil washing process. Preliminary soil data from the Kori 1 nuclear power plant was used in the model. It was shown that a batch process such as soil washing can be effectively modeled as a discrete event process. Efficient allocation of resources and efficient waste management including volume and classification reduction can be achieved by use of the model for planning the soil remediation process. Cost will be an important criterion in the choice of suitable technologies for soil remediation but is not included in this conceptual model.


Chemosphere ◽  
2019 ◽  
Vol 223 ◽  
pp. 140-147 ◽  
Author(s):  
Xiaoyi Xu ◽  
Hang Zhou ◽  
Xi Chen ◽  
Bin Wang ◽  
Zhaoxia Jin ◽  
...  

2020 ◽  
Vol 148 ◽  
pp. 05004
Author(s):  
Agus Jatnika Effendi ◽  
Vina Lestari ◽  
Mohammad Irsyad

Most of the artisanal and small-scale gold miners in Indonesia as in the case of those who are in Banten Province, still use the amalgamation process in the gold extraction process. Therefore, mercury contamination could not be avoided. As a result, it was found that the concentration of mercury-contaminated soil in Lebak, Banten Province was detected as high as 136,9 mg/kg. Since the contamination process occurred for a long time, making the formation and mobility of complex mercury in soil increased by time. Soil washing is one remediation technology that can be applied in the recovery of mercury-contaminated soil. This study aims to determine the optimum conditions of the soil washing process: effect of pH, the concentration of washing solutions and ratio of solid/liquid. Furthermore, the value of the distribution coefficient, desorption of mercury in the soil and fractionation of mercury in the soil were also observed. Potassium Iodide was found to be the best washing solution among others used in this study. The optimum condition was obtained at pH 2, the concentration of washing solution at 0.25 M and the solid/liquid ratio of 1:15. Under these conditions, mercury desorption efficiency reached 86.9% with the value of the distribution coefficient of 0.185. Mercury fractionation analysis in the contaminated soil showed that the mobile > semi-mobile > non-mobile fractions. Potassium iodide was able to desorb at about 84% of mobile fractions, 97% of semi-mobile and 25% non-mobile mercury.


Sign in / Sign up

Export Citation Format

Share Document