Evaluating ozone dose for AOC removal in two-step GAC filters

1998 ◽  
Vol 37 (9) ◽  
pp. 113-120 ◽  
Author(s):  
R. Vahala ◽  
T. Ala-Peijari ◽  
J. Rintala ◽  
R. Laukkanen

Upgrading an existing post-ozonation plant with two-step granular activated carbon (GAC) filtration for assimilable organic carbon (AOC) removal was studied. The effects of ozone dose on AOC formation and its removal in the subsequent two-step GAC filtration was studied using chemically pretreated 2 to 14° C humic lake water. Two parallel pilot-plant trains with different ozone doses (0 to 1.2 mgO3/mgTOC) and a short-term ozonation study were performed. The optimum ozone dose for maximum AOC formation was 0.4–0.5 mgO3/mgTOC. The AOC-P17 of ozonated water was three-fold higher and AOC-NOX over ten-fold higher than in non-ozonated water, while the following biofiltration (first step) removed 51% and 72% of AOC-P17 and AOC-NOX, respectively. The adsorber (second step) contributed to less than 10% of the overall AOC reduction. It appeared that biofiltration is a feasible method in upgrading water treatment plants for AOC removal even when treating cold humic waters, while the subsequent adsorber seems to have less significance for AOC removal.

2011 ◽  
Vol 4 (1) ◽  
pp. 25-35 ◽  
Author(s):  
L. T. J. van der Aa ◽  
L. C. Rietveld ◽  
J. C. van Dijk

Abstract. Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen and the production of carbon dioxide were taken as indicators for NOM biodegradation. Ozonation stimulated DOC and AOC removal in the BGAC filters, but had no significant effect on oxygen consumption or carbon dioxide production. The temperature had no significant effect on DOC and AOC removal, while it had a positive effect on oxygen consumption and carbon dioxide production. Multivariate linear regression was used to quantify these relationships. In summer, the ratio between oxygen consumption and DOC removal was approximately 2 times the theoretical maximum of 2.6 g O2 g C−1 and the ratio between carbon dioxide production and DOC removal was approximately 1.5 times the theoretical maximum of 3.7 g CO2 g C−1. The production and loss of biomass, the degassing of (B)GAC filters, the decrease in the NOM reduction degree and the temperature effects on NOM adsorption could only partly explain these excesses and the non-correlation between DOC and AOC removal and oxygen consumption and carbon dioxide production. It was demonstrated that bioregeneration of NOM could explain the excesses and the non-correlation. Therefore, it was likely that bioregeneration of NOM did occur in the (B)GAC pilot filters.


1995 ◽  
Vol 22 (5) ◽  
pp. 945-954
Author(s):  
Hélène Baribeau ◽  
Michèle Prévost ◽  
Raymond Desjardins ◽  
Pierre Lafrance ◽  
Bernard Legube

The effects of biological treatment (ozonation followed by biological activated carbon filtration (BAC)) on chlorine demand and on formation of trihalomethanes (THM) and total organic halides compounds (TOH) were studied at the Sainte-Rose water treatment facility, Laval. The plant influent is a surface water with a dissolved organic carbon of 6–7 mg/L. Results showed that ozonation marginally reduced (0–6%) short term chlorine demand but that BAC filtration reduced it by 40–55%. Ozonation versus BAC filtration was found to effect THM and TOH formation differently from the removal of the chlorine demand. THM (4-h contact with chlorine) and TOH formations were reduced by 48–60% and 39%, respectively, via ozonation. With BAC filtration, THM and TOH formations were reduced by 20–34% and 16%, respectively, with respect to the ozonated influent. For all essays, an initial significant decrease in residual chlorine was followed by an increase in TOH and subsequently in THM. The initial chlorine doses used for measuring the chlorine demand were found to have an effect on the final results. An increase in the initial chlorine dose resulted in a higher chlorine demand as well as in higher THM and TOH formations. The effect was found to be more profound at chlorine doses less than 3 mg Cl2/mg total organic carbon. Key words: chlorine demand, chlorination by-products, trihalomethane, total organic halides, ozonation, filtration, biological activated carbon.


2004 ◽  
Vol 67 (4) ◽  
pp. 813-817 ◽  
Author(s):  
KATHLEEN T. RAJKOWSKI ◽  
EUGENE W. RICE

The bioassays assimilable organic carbon (AOC) and coliform growth response are better indexes than biological oxygen demand to determine water quality and water's ability to support the growth of bacteria. Ozonated (5 mg/liter) and chlorinated tap water were used to wash alfalfa seeds for 30 min. After washing in the ozonated tap water, the AOC concentration increased 25-fold, whereas the dissolved ozone decreased to undetectable levels. The AOC levels for the chlorinated water after washing the seeds also increased. These increases are due to ozone's strong oxidizing ability to break down refractory, large-molecular-weightcompounds, forming smaller ones, which are readily used as nutrient sources for microorganisms. This same phenomenon was observed when using ozone in the treatment of drinking water. The AOC value increased from 1,176 to 1,758 μgC-eq/liter after the reconditioned wastewater was ozonated. When the ozonated wastewater was inoculated with Salmonella serotypes, the cells survived and increased generation times were observed. The increased nutrients would now become more readily available to any pathogenic microorganisms located on alfalfa seed surface as seen with the increase in the inoculated levels of Salmonella in the ozonated wastewater. If the washing process using ozonated water is not followed by the recommended hypochlorite treatment or continually purged with ozone, pathogen growth is still possible.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Benjamin Horemans ◽  
Bart Raes ◽  
Hannelore Brocatus ◽  
Jeroen T'Syen ◽  
Caroline Rombouts ◽  
...  

ABSTRACT Aminobacter sp. strain MSH1 grows on and mineralizes the groundwater micropollutant 2,6-dichlorobenzamide (BAM) and is of interest for BAM removal in drinking water treatment plants (DWTPs). The BAM-catabolic genes in MSH1 are located on plasmid pBAM1, carrying bbdA, which encodes the conversion of BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) (BbdA+ phenotype), and plasmid pBAM2, carrying gene clusters encoding the conversion of 2,6-DCBA to tricarboxylic acid (TCA) cycle intermediates (Dcba+ phenotype). There are indications that MSH1 easily loses its BAM-catabolic phenotype. We obtained evidence that MSH1 rapidly develops a population that lacks the ability to mineralize BAM when grown on nonselective (R2B medium) and semiselective (R2B medium with BAM) media. Lack of mineralization was explained by loss of the Dcba+ phenotype and corresponding genes. The ecological significance of this instability for the use of MSH1 for BAM removal in the oligotrophic environment of DWTPs was explored in lab and pilot systems. A higher incidence of BbdA+ Dcba− MSH1 cells was also observed when MSH1 was grown as a biofilm in flow chambers under C and N starvation conditions due to growth on nonselective residual assimilable organic carbon. Similar observations were made in experiments with a pilot sand filter reactor bioaugmented with MSH1. BAM conversion to 2,6-DCBA was not affected by loss of the DCBA-catabolic genes. Our results show that MSH1 is prone to BAM-catabolic instability under the conditions occurring in a DWTP. While conversion of BAM to 2,6-DCBA remains unaffected, BAM mineralization activity is at risk, and monitoring of metabolites is warranted. IMPORTANCE Bioaugmentation of dedicated biofiltration units with bacterial strains that grow on and mineralize micropollutants was suggested as an alternative for treating micropollutant-contaminated water in drinking water treatment plants (DWTPs). Organic-pollutant-catabolic genes in bacteria are often easily lost, especially under nonselective conditions, which affects the bioaugmentation success. In this study, we provide evidence that Aminobacter sp. strain MSH1, which uses the common groundwater micropollutant 2,6-dichlorobenzamide (BAM) as a C source, shows a high frequency of loss of its BAM-mineralizing phenotype due to the loss of genes that convert 2,6-DCBA to Krebs cycle intermediates when nonselective conditions occur. Moreover, we show that catabolic-gene loss also occurs in the oligotrophic environment of DWTPs, where growth of MSH1 depends mainly on the high fluxes of low concentrations of assimilable organic carbon, and hence show the ecological relevance of catabolic instability for using strain MSH1 for BAM removal in DWTPs.


2011 ◽  
Vol 255-260 ◽  
pp. 2731-2735
Author(s):  
Hua Fang ◽  
De Fu Xu ◽  
Xiao Ru Fu ◽  
Yuan Wang ◽  
Ji Lai Lu

Levels of organic matters in raw water from Huangpu River and treated water from different processes have been investigated. Dissolved organic carbon (DOC) and assimilable organic carbon (AOC) have been determined on ultrafiltrate (UF) (MW cut-off of 1K and 10K Daltons) samples. The organics in raw water are majority of lower MW (<1K Daltons) fractions. The conventional treatment processes are effective in removing higher MW (>10K Daltons) organics, while granular activated carbon (GAC) adsorption can reduce organics with lower MW significantly. The lower MW fractions correspond to 60%~70% of the AOC in raw and treated waters, and much higher than other MW fractions. This indicates that the AOC is mainly related to organics with lower MW. In order to decrease AOC level to achieve biostability in drinking water, the processes which can reduce lower MW organics effectively must be employed.


2004 ◽  
Vol 50 (8) ◽  
pp. 73-80 ◽  
Author(s):  
W.J. Huang ◽  
H.S. Peng ◽  
M.Y. Peng ◽  
L.Y. Chen

This study investigated the feasibility of using granular activated carbon (GAC) to remove bromate ion (BrO3-) and assimilable organic carbon (AOC) from drinking water through a rapid small-scale column test (RSSCT) method and a pilot-scale study. Results from RSSCT indicated that the GAC capacity for BrO3- removal was dependent on the GAC type, empty bed contact time (EBCT), and source water quality. The GAC with a high number of basic groups and higher pHpzc values showed an increased BrO3- removal capacity. BrO3- removal was improved by increasing EBCT. The high EBCT provides a greater opportunity for BrO3- to be adsorbed and reduced to Br- on the GAC surface. On the other hand, the presence of dissolved organic carbon (DOC) and anions, such as chloride, bromide, and sulfate, resulted in poor BrO3- reduction. In the GAC pilot plant, a GAC column preloaded for 12 months achieved a BrO3- and AOC removal range from 79-96% and 41-75%, respectively. The BrO3- amount removed was found to be proportional to the influent BrO3- concentration. However, the BrO3- removal rate apparently decreased with increasing operation time. In contrast, the AOC apparently increased during the long-term operation period. This may be a result of the contribution due to new GAC being gradually transformed into biological activated carbon (BAC), and the bacterial biomass adsorbed on GAC surface hindering BrO3- reduction by GAC either by blocking pores or adsorbing at the activated sites for BrO3- reduction.


Sign in / Sign up

Export Citation Format

Share Document