Characterization and treatment of effluent from opium alkaloid processing wastewater

1999 ◽  
Vol 40 (1) ◽  
pp. 23-30 ◽  
Author(s):  
M. F. Sevimli ◽  
A. F. Aydın ◽  
H. Z. Sarikaya ◽  
İ Öztürk

Opium is a traditional produce of Turkey planted and harvested under the control of the Government. This study was undertaken to characterize the wastewater from opium alkaloid processing. Thus, the laboratory records of the two stage aerobic biological treatment plant of the Opium Alkaloid factory were evaluated. Following the statistical analysis of the results for the last three years, it was found that the median values of influent COD and BOD5 concentrations were 29,300 mg/l and 15,000 mg/l respectively. Two stage aerobic biological treatment could reduce these values down to 1,132 mg/l and 100 mg/l. Specific wastewater generation was 6.7 m3 per ton of the opium capsule processed. Experiments conducted at an upflow anaerobic sludge blanket reactor type pilot plant have demonstrated that 70 percent of the incoming COD can be removed anaerobically, and can be considered as a cost effective substitute for the 1st stage of the aerobic treatment. Post treatment of the effluents of the existing two stage aerobic treatment with ozone resulted in significant color removal and COD reduction.

1995 ◽  
Vol 32 (9-10) ◽  
pp. 75-84 ◽  
Author(s):  
A. D. Andreadakis ◽  
G. H. Kristensen ◽  
A. Papadopoulos ◽  
C. Oikonomopoulos

The wastewater from the city of Thessaloniki is discharged without treatment to the nearby inner part of the Thessaloniki Gulf. The existing, since 1989, treatment plant offers only primary treatment and did not operate since the expected effluent quality is not suitable for safe disposal to the available recipients. Upgrading of the plant for advanced biological treatment, including seasonal nitrogen removal, is due from 1995. In the mean time, after minor modifications completed in February 1992, the existing plant was put into operation as a two-stage chemical-biological treatment plant for 40 000 m3 d−1, which corresponds to about 35% of the total sewage flow. The operational results obtained during the two years operation period are presented and evaluated. All sewage and sludge treatment units of the plant perform better than expected, with the exception of the poor sludge settling characteristics, due to severe and persistent bulking caused by excessive growth of filamentous microorganisms, particularly M. Parvicella. Effective control of the bulking problem could lead to more cost-effective operation and increased influent flows.


2000 ◽  
Vol 41 (1) ◽  
pp. 223-230 ◽  
Author(s):  
M.F. Sevimli ◽  
A.F. Aydin ◽  
Ì. Öztürk ◽  
H.Z. Sarikaya

The aim of this study is to characterize the wastewater from an opium alkaloid processing plant and to evaluate alternative treatment techniques to upgrade an existing full-scale biological activated sludge treatment plant having problems of high residual COD and unacceptable dark brown color. In this content firstly, long term operational records of the two stage aerobic activated sludge treatment plant of the opium alkaloid factory located in Afyon province of Turkiye were evaluated. The operating results for the last three years were statistically analyzed and median and 95-percentile values were determined for the parameters including chemical and biological oxygen demand (COD and BOD5) and treatment efficiencies. Specific wastewater generation was found as 6.7 m3 per ton of the opium capsule processed. In the following stage of the study, three additional treatment processes were experimentally tested: anaerobic pretreatment, post treatment of aerobically treated effluents with lime and ozone. Pilot scale upflow anaerobic sludge blanket reactor (UASBR) experiments have demonstrated that about 70 percent of the incoming COD can be removed anaerobically. Chemical treatability studies with lime for the aerobically treated effluent have shown that about 78 percent color and 46 percent COD removals can be obtained with lime dosage of 25 gl−1. Post treatment of the effluents of the existing two stage aerobic treatment with ozone also resulted in significant color and COD reduction.


2010 ◽  
Vol 37 (5) ◽  
pp. 805-813 ◽  
Author(s):  
Siriuma Jawjit ◽  
Winai Liengcharernsit

This study aims to investigate treatment performance of the two-stage upflow anaerobic sludge blanket (UASB) applied to concentrated latex processing wastewater in Thailand. First, optimal conditions including the hydraulic retention time (HRT) in the acid tank and the UASB tank, pH, and temperature (mesophilic and thermophilic) were determined. It was found that the HRT at 24 h and 48 h were the optimal HRT for the acid tank and the UASB tank, respectively. The pH of the system should be controlled at 7 to prevent rubber coagulation and to achieve high treatment performance, and the mesophilic condition (35°C) was found to be the optimal temperature. Second, the two-stage UASB was applied with the optimal conditions mentioned earlier with real wastewater at a latex mill. It was found that methane production was about 0.116 L CH4/g COD removed (16.3–22.8 m3CH4/d), and average chemical oxygen demand (COD) and suspended solids (SS) removal efficiency were about 82% and 92%, respectively. In case of SS removal, the results revealed that the two-stage UASB was capable of overcoming the limitations of the single-stage UASB in treating concentrated latex effluent. The results indicated that application of the two-stage UASB to concentrated latex processing wastewater is feasible. Nevertheless, combination with other treatment systems (e.g., oxidation pond, aerated lagoon) is necessary to meet Thailand's industrial effluent standards (in the case of COD).


2021 ◽  
Vol 56 (4) ◽  
pp. 621-629
Author(s):  
Orlando Antonio Duarte Hernandez ◽  
Ana Caroline Paula ◽  
Gustavo Rafael Collere Possetti ◽  
Mauricio Pereira Cantão ◽  
Miguel Mansur Aisse

This study aims to present the time behavior of wastewater flow parameters, organic matter, biogas flow, biogas composition, and its relations, measured through online sensors, in a municipal wastewater treatment plant (WWTP) operating full-scale upflow anaerobic sludge blanket (UASB) reactors, installed in the south of Brazil. WWTP has online measurement devices to evaluate some physicochemical variables of the sewage and the biogas. The COD analyzer (UV– Vis probe), ultrasonic flow meter, biogas flow meter, and biogas composition analyzer were the equipment used. The monitoring occurred for two time periods each of 72 h and one time period for 48 h in the year 2018. Data were checked with descriptive statistics, data independence was checked through the autocorrelation Box– Ljung test, normality behavior was checked with several tests (Shapiro– Wilk, Kolmogorov–Smirnov, Lilliefors, Anderson–Darling, D’Agostino K2, and Chen–Shapiro), and Spearman’s correlation coefficient was used to evaluate the correlations among the parameters. The mean sewage flow was 345 ± 120 L.s-1; removed organic load was, in average, 48%; biogas quality values were 82.32% ± 3.62% v/v (CH4), 2.66% ± 1.19% v/v (CO2), and 3453 ± 1268 ppm (H2S); and the production per capita obtained was 4.51 ± 1.65 NL.hab-1.d-1. It was estimated an electric power generation of 3118.6 kWh.d-1, which is equivalent to an installed power of 130 KW. The behavior of removed organic load and biogas flow (Nm3.h-1), produced in the treatment plant, showed variable, periodic, and nonstationary time behavior.  


1995 ◽  
Vol 32 (12) ◽  
pp. 131-139 ◽  
Author(s):  
T. Çiftçi ◽  
I. Öztürk

This paper presents the results of nine years of experience in design and operating of full-scale anaerobic-aerobic treatment plants in a fermentation industry producing baker's yeast from sugarbeet molasses. The PAKMAYA Izmit Factory has a large two-staged treatment plant since 1986: anaerobic first stage and aerobic second stage. The anaerobic reactors were constructed as Upflow Anaerobic Sludge Blanket Reactors (UASBR) with internal and external sludge recirculation facilities. Average COD removals remain in the range of 75% in the mesophilic anaerobic stage. Average daily biogas production rates are as high as 20,000 m3/day. This treatment plant is one of the largest in the world in terms of biogas production. Similar systems were constructed later in two other factories of the same company (Cumaova-Bolu, Kemalpasa-Izmir). The biogas conversion yield is about 0.65 m3 per kg COD removed. The energy produced from the biogas used in the boiler houses is about 35% of the total energy requirement of the factory. The effluents from the anaerobic first stage are fed to the subsequent aerobic treatment system by mixing with low strength effluents of the factory. The aerobic second stage was designed and operated as an extended aeration activated sludge system. The COD removals of the aerobic stage are averaging at about 60 to 75%. This paper also discusses the operating problems encountered in the various stages of the treatment system and their solutions during the nine years of full-scale operation in three different treatment plants of PAKMAYA.


2008 ◽  
Vol 58 (2) ◽  
pp. 373-377
Author(s):  
Soosan J. Panicker ◽  
M. C. Philipose ◽  
Ajit Haridas

The Buoyant Filter Bio-Reactor (BFBR) is a novel and very efficient method for the treatment of complex wastewater. Sewage is a complex wastewater containing insoluble COD contributed by fat and proteins. The fat and proteins present in the domestic sewage cause operational problems and underperformance in the Upflow Anaerobic Sludge Blanket Reactor, used now for treating sewage anaerobically. The biogas yield from the BFBR is 0.36 m3/kg COD reduced and the methane content was about 70–80%. Production of methane by anaerobic digestion of organic waste had the benefit of lower energy costs for treatment and is thus environmentally beneficial to the society by providing a clean fuel from renewable feed stocks. The BFBR achieved a COD removal efficiency of 80–90% for an organic loading rate of 4.5 kg/m3/d at a hydraulic retention time of 3.25 hours. The effluent COD was less than 100 mg/l, thus saving on secondary treatment cost. No pretreatment like sedimentation was required for the influent to the BFBR. The BFBR can produce low turbidity effluent as in the activated sludge process (ASP). The land area required for the BFBR treatment plant is less when compared to ASP plant. Hence the problem of scarcity of land for the treatment plant is reduced. The total expenditure for erecting the unit was less than 50% as that of conventional ASP for the same COD removal efficiency including land cost.


1999 ◽  
Vol 39 (5) ◽  
pp. 97-103
Author(s):  
Fatma A. El-Gohary ◽  
Fayza A. Nasr

The implementation of low-cost, simple mitigation measures is required for the timely control and sustainable management of pollution problems in developing countries. Recently, the use of anaerobic systems for wastewater treatment has received a growing attention since they represent an alternative cost-effective approach for removal of pollutants. Therefore, evaluation of the performance of an Upflow Anaerobic Sludge Blanket Reactor, as a pre-treatment step for industrial as well as domestic wastewater was the subject of this study. The results obtained showed that the performance of one-stage UASB at 8hrs hydraulic retention time (HRT) for domestic wastewater treatment was quite satisfactory. CODtot and BODtot removal values averaged 77% and 83%. Comparison of the performance of a one-stage versus two-stage reactor, having the same volume and operated at the same HRT (8 hr) and biomass concentration indicated an improvement in the quality of the two-stage effluent. With regard to the wastewater discharged from a potato-chips factory, the use of one-stage UASB at a detention time of 18hrs and an average organic load of 2.9 kg BOD/m3/d gave good results. Average residual values of COD, BOD, TSS and oil and grease in the treated effluent were 650, 342, 203 and 63 mg/l, respectively. Operation of a two-stage pilot-scale UASB indicated better performance as expressed by COD and BOD removal values.


2009 ◽  
Vol 59 (11) ◽  
pp. 2265-2272 ◽  
Author(s):  
S. Satyanarayan ◽  
A. Karambe ◽  
A. P. Vanerkar

Herbal pharmaceutical industry has grown tremendously in the last few decades. As such, literature on the treatment of this wastewater is scarce. Water pollution control problems in the developing countries need to be solved through application of cost effective aerobic/anaerobic biological systems. One such system—the upflow anaerobic sludge blanket (UASB) process which is known to be cost effective and where by-product recovery was also feasible was applied for treatment of a high strength wastewater for a period of six months in a pilot scale upflow anaerobic sludge blanket (UASB) reactor with a capacity of 27.44 m3. Studies were carried out at various organic loading rates varying between 6.26 and 10.33 kg COD/m3/day and hydraulic retention time (HRT) fluctuating between 33 and 43 hours. This resulted in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and suspended solids (SS) removal in the range of 86.2%–91.6%, 90.0%–95.2% and 62.6%–68.0% respectively. The biogas production varied between 0.32–0.47 m3/kg COD added. Sludge from different heights of UASB reactor was collected and subjected to scanning electron microscopy (SEM). The results indicated good granulation with efficient UASB reactor performance.


Sign in / Sign up

Export Citation Format

Share Document