Expenditure on the operation of municipal wastewater treatment plants for nutrient removal

2000 ◽  
Vol 41 (9) ◽  
pp. 281-289 ◽  
Author(s):  
O. Nowak

Operating costs of Austrian municipal treatment plants are evaluated for 1989/90 and for 1997, respectively. The results indicate that presently the expenses which can be directly connected to wastewater purification, i.e. energy and chemicals for P removal, comprise only about 20% of the total operating costs. Today, in Austria like in other EU countries, the predominating factor is “labour costs”, even at nutrient removal plants. A general scheme for estimating operating costs is presented that can be applied to WWTPs in other parts of the world. In this scheme the important factors relevant to the operating costs are integrated.

2003 ◽  
Vol 47 (12) ◽  
pp. 125-132 ◽  
Author(s):  
O. Nowak

The energy demand of municipal wastewater treatment plants for nutrient removal equipped with primary clarifiers, activated sludge system, anaerobic sludge digestion, and CHP is evaluated theoretically, on the basis of COD balances. Operational experience from energy-efficient Austrian treatment plants confirms that the demand on external electrical energy can be kept as low as 5 to 10 kWh/(pe.a) depending on the N:COD ratio in the raw wastewater. A low N:COD ratio helps to keep not only the effluent nitrogen load low, but also the energy demand. Measures to minimise the energy demand at treatment plants and to reduce the nitrogen load are discussed.


Vestnik MGSU ◽  
2019 ◽  
pp. 589-602 ◽  
Author(s):  
Tran Ha Quan ◽  
Elena S. Gogina

Introduction. Vietnamese urban municipal wastewater treatment plants are mainly of aeration-type facilities. Nowadays, an aeration-type plant, the Sequencing Batch Reactor (SBR), is widely applied and possesses a number of advantages over traditional systems with suspended activated sludge. Advantages of the SBR are mainly concluded in simplicity of operation, occupied area and cost. There is a number of problems at the wastewater treatment plants; they are connected with supplying only a half of wastewater design amount for the treatment as well as with quality of the purified water that must satisfy requirements of the Vietnamese discharge standard, the Standard A. Therefore, reconstruction and modification of the SBR is the major challenger to ensure the sustained development of large Vietnamese cities and maintenance of ecological balance. Materials and methods. To enhance the efficiency of wastewater purification in the SBR, the experiments were set on reactor reconstruction and modification by two directions: (1) Technological method, i.e. applying the Biochip 25 biocarrier, and (2) Operation method, i.e. adding the anoxic phase in reactor operation cycle. Laboratory tests were conducted for each of the directions, including comparison of a typical reactor with the modified one. Results. The study resulted in obtaining an optimal amount of the BioChip biocarrier material (10 to 20 %) that increased efficiency of wastewater purification by 10 to 20 %. In addition to this, when creating an anoxic phase of the operation cycle, efficiency of nitrogen removal increased by 20 %. When the denitrification occurs under the anoxic conditions, it contributes to stabilization of ammonium nitrogen removal for daily nitrogen loading in reactor of 0.3 to 0.8 TKN kg/sludge kg. Conclusions. The suggested technology provides the quality of treated water corresponding with the Vietnamese Standard A requirements. At the present, it is planned to proceed with the experiment on the base of Vietnamese semi-industrial plant for research and appraisal of the SBR reconstruction and modification method. Acknowledgements. The authors are grateful to AKVA Control company in Samara for granted biocarrier Mutag BioChip 25 and to Associate Professor Tran Van Quang and his students, Nguyen Ngoc Phuong and Truong Quoc Dai, of Environment Protect Research Center, Danang University for support of the experiment.


2010 ◽  
Vol 62 (5) ◽  
pp. 995-1002 ◽  
Author(s):  
J. W. Wang ◽  
T. Z. Zhang ◽  
J. N. Chen

Total emission load reduction of COD, NH4-N, TN, and TP is the key measure in controlling water pollution and eutrophication. Municipal wastewater treatment plants (MWWTPs) are major contributors in lowering energy consumption and reducing pollutant discharge. The flow-based operating costs have not been directly established to relate to costs of pollutant reduction based on an investigation of 11 MWWTPs in China. However, energy consumption to eliminate one kilogram of COD or NH4-N was observed to decrease when the total reduced pollutants is increased. Additional energy consumption required to remove nitrogen and phosphorus is allotted for mixers and internal return pumps. Major factors for operating costs include influent and effluent concentration, design capacity, and flow loading rate. Therefore, an operating cost model for the total emission load reduction of COD, NH4-N, TN, and TP was developed based on energy consumption and the above mentioned major factors. Using this model to calculate the operating costs for MWWTPs would facilitate more reduction of key pollutants than the flow-based method.


1991 ◽  
Vol 24 (10) ◽  
pp. 205-209
Author(s):  
Jirí Wanner ◽  
Miroslav Kos

A short state-of-the-art-review in nutrient removal technologies is given and problems connected with nutrient removal in the activated sludge process enumerated. The present level of BOD and nutrient load to the Elbe in the Czech Basin and possible means of improvement are discussed. Seven municipal wastewater treatment plants, planned to be built in 1990-2000, are briefly described. The total capacity of these plants represents about 280000 kg BOD5/d and 29000 kg TKN/d.


2016 ◽  
Vol 74 (11) ◽  
pp. 2620-2626 ◽  
Author(s):  
J. Haslinger ◽  
S. Lindtner ◽  
J. Krampe

This work presents operating costs and energy consumption of Austrian municipal wastewater treatment plants (WWTPs) (≥10,000 PE-design capacity) that have been classified into different size groups. Different processes as well as cost elements are investigated and processes with high relevance regarding operating costs and energy consumption are identified. Furthermore, the work shows the cost-relevance of six investigated cost elements. The analysis demonstrates the size-dependency of operating costs and energy consumption. For the examination of the energy consumption the investigated WWTPs were further classified into WWTPs with aerobic sludge stabilisation and WWTPs with mesophilic sludge digestion. The work proves that energy consumption depends mainly on the type of sludge stabilisation. The results of the investigation can help to determine reduction potential in operating costs and energy consumption of WWTPs and form a basis for more detailed analysis which helps to identify cost and energy saving potential.


2012 ◽  
Vol 66 (10) ◽  
pp. 2115-2121 ◽  
Author(s):  
M. Boehler ◽  
B. Zwickenpflug ◽  
J. Hollender ◽  
T. Ternes ◽  
A. Joss ◽  
...  

Micropollutants (MP) are only partly removed from municipal wastewater by nutrient removal plants and are seen increasingly as a threat to aquatic ecosystems and to the safety of drinking water resources. The addition of powder activated carbon (PAC) is a promising technology to complement municipal nutrient removal plants in order to achieve a significant reduction of MPs and ecotoxicity in receiving waters. This paper presents the salient outcomes of pilot- and full-scale applications of PAC addition in different flow schemes for micropollutant removal in municipal wastewater treatment plants (WWTPs). The sorption efficiency of PAC is reduced with increasing dissolved organic carbon (DOC). Adequate treatment of secondary effluent with 5–10 g DOC m−3 requires 10–20 g PAC m−3 of effluent. Counter-current use of PAC by recycling waste PAC from post-treatment in a contact tank with an additional clarifier to the biology tank improved the overall MP removal by 10 to 50% compared with effluent PAC application alone. A dosage of 15 g PAC m−3 to a full-scale flocculation sand filtration system and recycling the backwash water to the biology tank showed similar MP elimination. Due to an adequate mixing regime and the addition of adapted flocculants, a good retention of the fine fraction of the PAC in the deep-bed filter were observed (1–3 g TSS m−3; TSS: total suspended solids). With double use of PAC, only half of the PAC was required to reach MP removal efficiencies similar to the direct single dosage of PAC to the biology tank. Overall, the application of PAC in WWTPs seems to be an adequate and feasible technology for efficient MP elimination (>80%) from wastewater comparable with post ozonation.


Sign in / Sign up

Export Citation Format

Share Document