Factors affecting phosphorus removal in two biofilter system treating wastewater from car-washing facility

2000 ◽  
Vol 41 (4-5) ◽  
pp. 487-492 ◽  
Author(s):  
D. Pak ◽  
W. Chang

A two-biofilter system operated under alternating anaerobic/aerobic conditions was tested to remove nutrient as well as organics from wastewater generated from car-washing facility. The wastewater was characterized by relatively low organic and high phosphorus content. The factors affecting phosphorus removal in the two-biofilter system were investigated. Operational parameters examined in this study were hydraulic retention time, organic, suspended solid and nitrogen loading rate. The factors affecting phosphorus removal in biological filter appeared to be influent COD, COD/T–P, BOD/COD, nitrogen, and SS/T–P. Nitrite and nitrate produced in the biofilter in aerobic condition affected phosphorus removal by the two-biofilter system. The biomass wasted during backwash procedure also affected total phosphorus removal by the system.

2000 ◽  
Vol 41 (12) ◽  
pp. 101-106 ◽  
Author(s):  
D. Pak ◽  
W. Chang

A two-biofilter system operated under alternate conditions of anaerobic/aerobic was tested to simultaneously remove nitrogen and phosphorus from sewage. The factors affecting simultaneous removal of nitrogen and phosphorus by the two-biofilter system were investigated. Those factors appeared to be influent COD/T-N and COD/T-P ratio, nitrogen loading rate and hydraulic retention time. Nitrite and nitrate produced in the biofilter in aerobic condition affected phosphorus removal by the two-biofilter system. The amount of biomass wasted during the backwash procedure also affected total nitrogen and phosphorus removal by the system.


2006 ◽  
Vol 53 (6) ◽  
pp. 161-167 ◽  
Author(s):  
S.Y. Ahn ◽  
S.J. Kim ◽  
P.Y. Yang

This study investigated the bio-treatability of PCB contaminated oil for the development of design and operational parameters for the bioreactor. Input of external carbon and nutrient source in the aqueous phase was found to be required for the treatment of polychlorinated biphenyls (PCBs)-contaminated oil. Addition of surfactant was investigated for the emulsification of oil to reduce interference of contact with microorganisms and PCBs. The ratio of surfactant to oil was empirically optimized to 1 : 1. The higher PCB removal efficiency was obtained at 30 days of hydraulic retention time (HRT) in the semi-batch reactor study without cell recycle. The removal efficiency measured in mixed liquor was maintained at over 85% on average at 32±2 °C and 30% at 22±2 °C. More than 0.2 g/l/d of the organic loading rate was suggested to be maintained for various PCB loading rates (0.02–0.6 mg-PCB/l/d). For high biomass retaining and easy collection of treated oil, an Anaerobic Sequencing Batch Reactor (ASBR) was investigated. The removal of Aroclor was observed as more than 50% in the oil phase with 3 days reaction time and about 40% in overall phases, i.e. oil, liquid, biomass phases at 22±2 °C. US EPA verification results on the process performance are included in this presentation.


2010 ◽  
Vol 61 (12) ◽  
pp. 2965-2972 ◽  
Author(s):  
L. Zhang ◽  
S. J. Zhang ◽  
J. Zhou ◽  
S. Y. Wang ◽  
Y. P. Gan ◽  
...  

A novel system was used for nitrogen removal from reject water. This system includes one anoxic/oxic reactor for nitrification and a special reactor for denitrification in which primary sludge was added intermittently as electron donor. In denitrification reactor, sludge fermentation and denitrification reaction took place simultaneously and promoted each other. It was found that effluent recycle could improve nitrogen removal efficiency due to reclaiming of alkalinity. Under steady state conditions, the average solid retention time (SRT) in denitrification reactor was 12–15 d, a total nitrogen loading rate was 0.2 kg N/(m3 day) and TN removal efficiency was more than 90% without extra carbon source addition. Primary sludge was degraded so that volatile suspended solid (VSS) decreased by 50%. Further investigation showed that ORP could be taken as a control parameter for sludge addition.


RSC Advances ◽  
2014 ◽  
Vol 4 (97) ◽  
pp. 54798-54804 ◽  
Author(s):  
Ying-Cui Yu ◽  
Yu Tao ◽  
Da-Wen Gao

There are three key aspects of substrate effect on anaerobic ammonia oxidizing (anammox) bacteria: (1) substrate concentration-based nitrogen loading rate (NLR), (2) hydraulic retention time (HRT)-based NLR and (3) nitrite/ammonia ratio.


1996 ◽  
Vol 33 (7) ◽  
pp. 191-198 ◽  
Author(s):  
Rupert J. Craggs ◽  
Walter H. Adey ◽  
Kyle R. Jenson ◽  
Matthais S. St. John ◽  
F. Bailey Green ◽  
...  

Algal turf scrubbing is a novel technology for the treatment of agricultural runoff and eutrophic lake water and may have application for wastewater treatment. The algal turf scrubber (ATS)TM consists of a natural, mixed assemblage of attached periphyton, microalgae and bacteria which colonise an inclined floway over which wastewater flows in a series of pulses. A large-scale ATS (152.4 m long 6.5 m wide) was constructed in Patterson, California and tested in conjunction with UV disinfection over one year for its ability to treat secondary effluent from an evaporation pond. The hydraulic loading rate of the wastewater was varied between 436 and 1226 m3 per day and various operational parameters were tested. The biomass was mechanically harvested from the floway at one or two week intervals depending upon the season. This paper will present the results for phosphorus removal and productivity of the algal turf. Phosphorus removal from the secondary wastewater was measured twice a week during four, 8 week quarters corresponding to the solar seasons. The phosphorus content of the harvested solids was also measured during these periods. Based on the mean percentage of P (2.1 %) in the harvested solids and the mean productivity (35 g m−2 d−1), the yearly mean removal of phosphorus was 0.73 ± 0.28 g m−2 d−1. An inverse relationship was found between reduction in hydraulic loading rate and increase in pH, phosphorus removal and hardness reduction by the ATS. This indicated that pH mediated precipitation probably accounts for much of the phosphorus removal by the ATS and for the high mean phosphorus content of the harvested solids. Measurement of nutrient concentrations in influent and effluent of the ATS over 24 hours showed that at night phosphorus removal declined. These results indicate the potential of the ATS for phosphorus removal from wastewaters and suggest that removal may be easily controlled by altering the hydraulic loading rate.


2016 ◽  
Vol 75 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Takahiro Watari ◽  
Trung Cuong Mai ◽  
Daisuke Tanikawa ◽  
Yuga Hirakata ◽  
Masashi Hatamoto ◽  
...  

Conventional aerated tank technology is widely applied for post treatment of natural rubber processing wastewater in Southeast Asia; however, a long hydraulic retention time (HRT) is required and the effluent standards are exceeded. In this study, a downflow hanging sponge (DHS) reactor was installed as post treatment of anaerobic tank effluent in a natural rubber factory in South Vietnam and the process performance was evaluated. The DHS reactor demonstrated removal efficiencies of 64.2 ± 7.5% and 55.3 ± 19.2% for total chemical oxygen demand (COD) and total nitrogen, respectively, with an organic loading rate of 0.97 ± 0.03 kg-COD m−3 day−1 and a nitrogen loading rate of 0.57 ± 0.21 kg-N m−3 day−1. 16S rRNA gene sequencing analysis of the sludge retained in the DHS also corresponded to the result of reactor performance, and both nitrifying and denitrifying bacteria were detected in the sponge carrier. In addition, anammox bacteria was found in the retained sludge. The DHS reactor reduced the HRT of 30 days to 4.8 h compared with the existing algal tank. This result indicates that the DHS reactor could be an appropriate post treatment for the existing anaerobic tank for natural rubber processing wastewater treatment.


2018 ◽  
Vol 30 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Mirabelle Perossi Cunha ◽  
Rafael Marçal Ferraz ◽  
Giselle Patrícia Sancinetti ◽  
Renata Piacentini Rodriguez

2001 ◽  
Vol 44 (11-12) ◽  
pp. 137-142 ◽  
Author(s):  
S. Kantawanichkul ◽  
P. Neamkam ◽  
R.B.E. Shutes

Pig farm wastewater creates various problems in many areas throughout Thailand. Constructed wetland systems are an appropriate, low cost treatment option for tropical countries such as Thailand. In this study, a combined system (a vertical flow bed planted with Cyperus flabelliformis over a horizontal flow sand bed without plants) was used to treat settled pig farm wastewater . This system is suitable for using in farms where land is limited. The average COD and nitrogen loading rate of the vegetated vertical flow bed were 105 g/m2.d and 11 g/m2.d respectively. The wastewater was fed intermittently at intervals of 4 hours with a hydraulic loading rate of 3.7 cm/d. The recirculation of the effluent increased total nitrogen (TN) removal efficiency from 71% to 85%. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal efficiencies were 95% and 98%. Nitrification was significant in vertical flow Cyperus bed, and the concentration of nitrate increased by a factor of 140. The horizontal flow sand bed enhanced COD removal and nitrate reduction was 60%. Plant uptake of nitrogen was 1.1 g N/m2.d or dry biomass production was 2.8 kg/m2 over 100 days.


Sign in / Sign up

Export Citation Format

Share Document