Catalytic wet air oxidation of p-nitrophenol (PNP) aqueous solution using multi-component heterogeneous catalysts

2001 ◽  
Vol 43 (2) ◽  
pp. 229-236 ◽  
Author(s):  
C.-H. Yoon ◽  
S.-H. Cho ◽  
S.-H. Kim ◽  
S.-R. Ha

This study investigated the decomposition of high strength p-nitrophenol (PNP) of 2,000 mg/l (3,400 mg of COD/1,250 mg of TOC) by catalytic wet air oxidation. Multi-component heterogeneous catalysts were used as catalysts for this purpose. The study results using a batch reactor showed that catalyst “D” (Mn-Ce-Zr 22.4 g plus CuSO4 1.0 g; Mn-Ce-Zr-Cu [CuSO4]) was more effective (56˜74%) than catalyst “A” (Mn-Ce-Zr 22.4 g) under the given conditions (O2 partial pressure of 1.0 MPa; temperature of 170˜190°C; 30 min of reaction time). The best result was obtained when 2 g of Mn-Ce-Zr-Cu [CuSO4] was used per 1L of PNP aqueous solution. COD and TOC removal efficiencies were 18% and 23% without catalysts during 20 min of reaction at 190°C. They were improved to 79% and 71% with 2 g/L of Mn-Ce-Zr-Cu [CuSO4] under the same conditions. The ratio of BOD5/COD was measured to evaluate biodegradability. It was 0.05 without catalyst and increased to 0.33 with 2 g/L of Mn-Ce-Zr-Cu [CuSO4] for 20 min of reaction.

2006 ◽  
Vol 45 ◽  
pp. 2089-2095
Author(s):  
Jana Mikulová ◽  
Sylvie Rossignol ◽  
Jacques Barbier Jr. ◽  
Charles Kappenstein ◽  
Daniel Duprez

Sol-gel Zr0.1Ce0.9O2 and Zr0.1(Ce0.75Pr0.25)O2 mixed oxides and coprecipitated pure ceria CeO2 displaying the fluorine type structure have been used as platinum or ruthenium catalysts’ supports for catalytic wet air oxidation (CWAO) of aqueous solution of acetic acid (78 mmol.L-1). These catalysts were prepared by conventional impregnation (5 wt-%) from platinum and ruthenium precursor salts or by exchange (~2 wt-%) in the case of ruthenium. A screening of catalysts in CWAO at 200°C under 2 MPa was performed and reveals that the best platinum catalyst is supported on pure ceria displaying large surface. For ruthenium catalysts, the highest conversion after 3 hours of reaction has been reached by the Ru/Zr-Ce-O system.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xin Yang ◽  
Junhai Wang ◽  
Qi Zhang ◽  
Xu Wang ◽  
Linlin Xu ◽  
...  

Through a natural tree grain template and sol-gel technology, the heterogeneous catalytic materials based on polyoxometalate compounds H3[PM12O40] encapsulating SiO2: SiO2@H3[PM12O40] (SiO2@PM12, M = W, Mo) with core-shell structure had been prepared. The structure and morphology of the core-shell microspheres were characterized by the XRD, IR spectroscopy, UV-Vis absorbance, and SEM. These microsphere materials can be used as heterogeneous catalysts with high activity and stability for catalytic wet air oxidation of pollutant dyes safranine T (ST) at room condition. The results show that the catalysts have excellent catalytic activity in treatment of wastewater containing 10 mg/L ST, and 94% of color can be removed within 60 min. Under different cycling runs, it is shown that the catalysts are stable under such operating conditions and the leaching tests show negligible leaching effect owing to the lesser dissolution.


Chemosphere ◽  
2007 ◽  
Vol 66 (11) ◽  
pp. 2096-2105 ◽  
Author(s):  
María Eugenia Suarez-Ojeda ◽  
Albert Guisasola ◽  
Juan A. Baeza ◽  
Azael Fabregat ◽  
Frank Stüber ◽  
...  

2020 ◽  
Vol 7 (3) ◽  
pp. 199-211
Author(s):  
De-bin Li ◽  
Duo Wang ◽  
Zi-sheng Jiang

Wet air oxidation (WAO) is an attractive technique for sewage sludge treatment. The WAO process and the factors influencing the process are examined in detail, together with the advantages and disadvantages. Catalytic wet air oxidation (CWAO) is emphasized because it can lower operational conditions, and the commonly-used and new homogeneous and heterogeneous catalysts are introduced. Homogeneous catalysts tend to be more appropriate for the CWAO treatment of sewage sludge, and Cu-based homogeneous catalysts such as CuSO4 are the most popular for industrial applications. Heterogeneous catalysts include non-noble metal catalysts, noble metal catalysts, metal-organic frameworks (MOFs) catalysts, and non-metal catalysts. Non-noble metal catalysts typically contain hetero-elements as in Mo-based, Ce-based, Cu-based, Fe-based catalysts, multi-metal supported catalysts, and polyoxometalates catalysts. In general, Mo-based catalysts and Ce-based catalysts have higher activities than other metal-based catalysts. The commonly-used noble metal elements are based on Ru, Pt, Pd, Rh, and Ir. The MOF catalysts tend to have high catalytic activity, and the non-metallic carbon catalysts may be used in environments that would otherwise be toxic to traditional metal catalysts. To conclude, a summary of the challenges and prospects of WAO technology in sewage sludge treatment is given.


2010 ◽  
Vol 1279 ◽  
Author(s):  
A. E. Espinosa des Los Monteros ◽  
G. Lafaye ◽  
G. Torres ◽  
J. Barbier

AbstractCatalytic wet air oxidation (CWAO) of aqueous solutions of phenol was performed on ruthenium catalysts supported on different oxides: TiO2, ZrO2 and their doped ceria mixtures. Phenol was chosen as a model pollutant molecule because of its wide use in industrial processes. All the samples were found to be highly active for phenol oxidation and the various titania-ceria mixtures were the most efficient for total organic carbon (TOC) removal. ICP analysis of the remaining solution after reaction revealed that ruthenium has not leached. Moreover, elementary analysis of the used catalysts showed that the deposition of carbonaceous species on the surface of the catalysts was rather low and was dependent on the nature of the support.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3974
Author(s):  
Thu ◽  
Besson

The production of brandy from wine and bioethanol from sugarcane in distilleries generates vinasses, which are effluents that are rich in organic matter. Since they have a high pollution load characterized by high chemical and biological oxygen demands and a dark color, the depollution of these effluents is inevitable. Pt and Ru catalysts supported on titania and zirconia were explored in the catalytic wet air oxidation (CWAO) processing of cognac and sugarcane wastewaters, in batch mode and in a trickle-bed reactor, at a temperature condition of 190 °C and a pressure condition of 70 bar air. The addition of a catalyst promoted total organic carbon (TOC) abatement and the oxidation of ammonium ions formed from organic nitrogen in the effluents to dinitrogen or nitrates. The best results in terms of selectivity to N2 were obtained by using Pt catalysts; a selectivity of 92% to N2 and a TOC removal of 90% were observed in continuous oxidation of the sugarcane vinasse.


Sign in / Sign up

Export Citation Format

Share Document